Require Import Classical.
Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Values.
Require Import Memory.
Require Import Globalenvs.
Require Import Smallstep.
Require Import Op.
Require Import Events.
Require Import Registers.
Require Import Floats.
Require Import Utils.
Require Import Dom.
Require Import SSA.
Require Import SSAutils.
Require Import Axioms.
Require Import KildallComp.
Require Import OrderedType.
Require Import Ordered.
Require Import FSets.
Require Import DLib.
Require FSetAVL.
Global Hint Extern 4 (
In _ (
successors_instr _)) =>
simpl successors_instr:
core.
Unset Allow StrictProp.
This file gather other definitions about dominance, related to the
dsd predicate, where dsd f x pc holds whenever the definition
point of register x strictly dominates node pc
Inductive dsd (
f:
function) (
x:
reg) (
n:
node) :
Prop :=
|
dsd_def_sdom :
forall def_x,
def f x def_x ->
sdom f def_x n ->
~
assigned_phi_spec (
fn_phicode f)
n x ->
dsd f x n
|
dsd_def_phi :
assigned_phi_spec (
fn_phicode f)
n x ->
dsd f x n.
Lemma ssa_dsd_entry :
forall f,
wf_ssa_function f ->
forall x,
dsd f x (
fn_entrypoint f) ->
False.
Proof.
Lemma dsd_def_params :
forall f x n,
wf_ssa_function f ->
reached f n ->
n <>
f.(
fn_entrypoint) ->
ext_params f x ->
dsd f x n.
Proof.
Lemma dsd_pred_njp :
forall f,
wf_ssa_function f ->
forall n1 n2 x,
reached f n1 ->
n1 <>
f.(
fn_entrypoint) ->
cfg f n1 n2 ->
dsd f x n2 ->
(
dsd f x n1 /\ ~
assigned_phi_spec (
fn_phicode f)
n2 x) \/
(
def f x n1 /\ ~
assigned_phi_spec (
fn_phicode f)
n1 x /\ ~
ext_params f x) \/
(
assigned_phi_spec (
fn_phicode f)
n2 x /\ ~
ext_params f x).
Proof.
intros f H n1 n2 x H0 Hn1 H1 H2.
inv H2.
-
exploit (@
sdom_dom_pred node peq) ;
go.
intros Hdom.
apply (@
dom_eq_sdom node peq)
in Hdom.
destruct Hdom as [
Hdom|
Hdom].
+
subst.
destruct (
classic (
ext_params f x))
as [
E|
E].
*
left;
split;
auto.
eapply dsd_def_params;
eauto.
*
inv H3.
right ;
left ;
repeat split ;
auto.
right ;
left ;
split ;
auto.
destruct (
fn_ssa f)
as [
HH HH'] ;
auto.
elim (
HH x n1 n1) ;
eauto.
intuition.
left ;
split ;
eauto.
econstructor 2 ;
eauto.
+
left ;
split ;
auto.
econstructor 1 ;
eauto.
intro Hcont.
inv Hcont.
exploit (
def_def_eq f x n1 def_x H);
eauto.
intros.
inv H7.
inv Hdom;
intuition.
-
right ;
right ;
split;
auto.
intro.
inv H2.
eelim fn_ssa_params;
eauto;
intros _ T.
elim T with n2;
auto.
elim H5 with n2;
auto.
Qed.
Lemma def_dom_sdom_dsd :
forall f x pc1 pc2 pc3,
def f x pc1 ->
dom f pc1 pc2 ->
sdom f pc2 pc3 ->
dsd f x pc3.
Proof.
Lemma def_sdom_dsd :
forall f x pc1 pc2,
def f x pc1 ->
sdom f pc1 pc2 ->
dsd f x pc2.
Proof.
Some helful ltac
Ltac not_a_def :=
match goal with
| [
h1:
def ?
f ?
x ?
n,
h2: (
fn_code ?
f)! ?
n =
Some _ |-
_] =>
inv h1; [
idtac
|
match goal with
| [
h3:
assigned_code_spec _ ?
n ?
x |-
_] =>
inv h3;
congruence
end
|
intuition;
fail]
end .
Ltac not_a_phi_def :=
match goal with
| [
h:
assigned_phi_spec _ _ _ |-
_] =>
elim not_jnp_not_assigned_phi_spec with (3:=
h);
auto;
fail
end.
Ltac simplify_dsd :=
try not_a_phi_def;
try not_a_def;
try match goal with
|
id1:
ext_params ?
f ?
x,
id2: ~ (
ext_params ?
f ?
x) |-
_ =>
elim id2;
assumption
end.
Ltac simp_entry f :=
exploit (
fn_entry f) ;
eauto ;
intros [
ns Hns] ;
congruence.
More lemmas
Lemma dsd_pred_not_join_point :
forall f,
wf_ssa_function f ->
forall n1 n2 x,
reached f n1 ->
cfg f n1 n2 ->
dsd f x n2 ->
~
join_point n2 f ->
(
ext_params f x /\
n1 =
fn_entrypoint f) \/
(
dsd f x n1 /\ ~
assigned_code_spec (
fn_code f)
n1 x) \/
(
assigned_code_spec (
fn_code f)
n1 x /\ ~
assigned_phi_spec (
fn_phicode f)
n1 x).
Proof.
Lemma dsd_pred_jpn' :
forall f xk args,
wf_ssa_function f ->
forall
pc pc'
k x phiinstr,
(
fn_code f) !
pc =
Some (
Inop pc') ->
index_pred (
Kildall.make_predecessors (
fn_code f)
successors_instr)
pc pc' =
Some k ->
In (
Iphi args x)
phiinstr ->
(
fn_phicode f) !
pc' =
Some phiinstr ->
nth_error args k =
Some xk ->
(
dsd f xk pc /\
pc <>
fn_entrypoint f) \/ (
ext_params f xk /\
pc =
fn_entrypoint f).
Proof.
Lemma dsd_pred_jpn :
forall xk f,
wf_ssa_function f ->
forall
pc pc'
k args x phiinstr,
(
fn_code f) !
pc =
Some (
Inop pc') ->
index_pred (
Kildall.make_predecessors (
fn_code f)
successors_instr)
pc pc' =
Some k ->
In (
Iphi args x)
phiinstr ->
(
fn_phicode f) !
pc' =
Some phiinstr ->
nth_error args k =
Some xk ->
~
ext_params f xk ->
dsd f xk pc.
Proof.
Global Hint Constructors ext_params dsd:
core.
Lemma def_match_ins :
forall f x pc,
wf_ssa_function f ->
def f x pc ->
~
assigned_phi_spec (
fn_phicode f)
pc x ->
~
ext_params f x ->
match (
fn_code f) !
pc with
|
Some (
Iop op args dst succ) =>
dst =
x
|
Some (
Iload chunk addr args dst succ) =>
dst =
x
|
Some (
Icall sig fn args dst succ) =>
dst =
x
|
Some (
Ibuiltin fn args (
BR dst)
succ) =>
dst =
x
|
_ =>
False
end.
Proof.
intros.
inv H0; try (intuition; fail).
inv H3; rewrite H0; auto.
Qed.
Lemma dsd_match_ins :
forall f x pc,
wf_ssa_function f ->
dsd f x pc ->
match (
fn_code f) !
pc with
|
Some (
Iop op args dst succ) =>
dst <>
x
|
Some (
Iload chunk addr args dst succ) =>
dst <>
x
|
Some (
Icall sig fn args dst succ) =>
dst <>
x
|
Some (
Ibuiltin fn args (
BR dst)
succ) =>
dst <>
x
|
_ =>
True
end.
Proof.
intros.
case_eq ((
fn_code f)!
pc);
intros;
auto.
destruct i;
auto;
intros;
try intro;
subst.
-
assert (
assigned_code_spec (
fn_code f)
pc x).
econstructor 1;
eauto.
inv H0.
destruct H4 as [
_ H4].
elim H4;
apply ssa_def_unique with f x;
auto.
destruct (
fn_ssa _ H)
as [
T _].
elim (
T x pc pc);
intuition.
-
assert (
assigned_code_spec (
fn_code f)
pc x).
econstructor 2;
eauto.
inv H0.
destruct H4 as [
_ H4].
elim H4;
apply ssa_def_unique with f x;
auto.
destruct (
fn_ssa _ H)
as [
T _].
elim (
T x pc pc);
intuition.
-
assert (
assigned_code_spec (
fn_code f)
pc x).
econstructor 3;
eauto.
inv H0.
destruct H4 as [
_ H4].
elim H4;
apply ssa_def_unique with f x;
auto.
destruct (
fn_ssa _ H)
as [
T _].
elim (
T x pc pc);
intuition.
-
destruct b ;
auto.
intro;
subst.
assert (
assigned_code_spec (
fn_code f)
pc x).
econstructor 4;
eauto.
inv H0.
destruct H4 as [
_ H4].
elim H4;
apply ssa_def_unique with f x;
auto.
destruct (
fn_ssa _ H)
as [
T _].
elim (
T x pc pc);
intuition.
Qed.
Lemma dsd_entry_ext_param:
forall f x pc,
wf_ssa_function f ->
(
fn_code f)!(
fn_entrypoint f) =
Some (
Inop pc) ->
dsd f x pc ->
~
assigned_phi_spec (
fn_phicode f)
pc x ->
ext_params f x.
Proof.
Lemma dsd_dom_dsd :
forall f x pc1 pc2,
dsd f x pc1 ->
dom f pc1 pc2 ->
dsd f x pc2.
Proof.
Lemma wf_ssa_use_phi_dsd :
forall f arg pc,
forall (
WF :
wf_ssa_function f)
(
REACHED:
reached f pc),
use_phicode f arg pc ->
dsd f arg pc \/
ext_params f arg.
Proof.