Module DLib
Require Export ZArith.
Require Export List.
Require Export Lia.
Require Export Coq.Program.Equality.
(* Necessary for 'dependent induction'. *)
Ltac autoinjection :=
repeat match goal with
|
h: ?
f _ = ?
f _ |-
_ =>
injection h;
intros;
clear h;
subst
|
h: ?
f _ _ = ?
f _ _ |-
_ =>
injection h;
intros;
clear h;
subst
|
h: ?
f _ _ _ = ?
f _ _ _ |-
_ =>
injection h;
intros;
clear h;
subst
|
h: ?
f _ _ _ _ = ?
f _ _ _ _ |-
_ =>
injection h;
intros;
clear h;
subst
|
h: ?
f _ _ _ _ _ = ?
f _ |-
_ _ _ _ _ =>
injection h;
intros;
clear h;
subst
end.
Ltac go :=
simpl in *;
repeat match goal with
|
h: ?
x =
_ |-
context[
match ?
x with _ =>
_ end] =>
rewrite h
end ;
autoinjection ;
try (
congruence);
try lia;
subst;
eauto 4
with zarith datatypes;
try (
once (
econstructor;
solve[
go])).
Tactic Notation "
go" :=
try (
go;
fail).
Ltac inv H :=
inversion H;
try subst;
clear H.
Ltac invh f :=
match goal with
[
id:
f |-
_ ] =>
inv id
| [
id:
f _ |-
_ ] =>
inv id
| [
id:
f _ _ |-
_ ] =>
inv id
| [
id:
f _ _ _ |-
_ ] =>
inv id
| [
id:
f _ _ _ _ |-
_ ] =>
inv id
| [
id:
f _ _ _ _ _ |-
_ ] =>
inv id
| [
id:
f _ _ _ _ _ _ |-
_ ] =>
inv id
| [
id:
f _ _ _ _ _ _ _ |-
_ ] =>
inv id
| [
id:
f _ _ _ _ _ _ _ _ |-
_ ] =>
inv id
| [
id:
f _ _ _ _ _ _ _ _ _ |-
_ ] =>
inv id
| [
id:
f _ _ _ _ _ _ _ _ _ _ |-
_ ] =>
inv id
| [
id:
f _ _ _ _ _ _ _ _ _ _ _ |-
_ ] =>
inv id
| [
id:
f _ _ _ _ _ _ _ _ _ _ _ _ |-
_ ] =>
inv id
| [
id:
f _ _ _ _ _ _ _ _ _ _ _ _ _ |-
_ ] =>
inv id
| [
id:
f _ _ _ _ _ _ _ _ _ _ _ _ _ _ |-
_ ] =>
inv id
end.
Tactic Notation "
flatten"
ident(
H) :=
repeat match goal with
|
H:
context[
match ?
x with |
left _ =>
_ |
right _ =>
_ end] |-
_ =>
destruct x
|
H:
context[
match ?
x with |
_ =>
_ end] |-
_ =>
let E :=
fresh "
Eq"
in destruct x eqn:
E
end;
autoinjection;
try congruence.
Tactic Notation "
flatten" :=
repeat match goal with
| |-
context[
match ?
x with |
left _ =>
_ |
right _ =>
_ end] =>
destruct x
| |-
context[
match ?
x with |
_ =>
_ end] =>
let E :=
fresh "
Eq"
in destruct x eqn:
E
end;
autoinjection;
try congruence.
Tactic Notation "
induction"
ident(
x) :=
dependent induction x.