Applicative finite maps are the main data structure used in this
project. A finite map associates data to keys. The two main operations
are
set k d m, which returns a map identical to
m except that
d
is associated to
k, and
get k m which returns the data associated
to key
k in map
m. In this library, we distinguish two kinds of maps:
-
Trees: the get operation returns an option type, either None
if no data is associated to the key, or Some d otherwise.
-
Maps: the get operation always returns a data. If no data was explicitly
associated with the key, a default data provided at map initialization time
is returned.
In this library, we provide efficient implementations of trees and
maps whose keys range over the type
positive of binary positive
integers or any type that can be injected into
positive. The
implementation is based on radix-2 search trees (uncompressed
Patricia trees) and guarantees logarithmic-time operations. An
inefficient implementation of maps as functions is also provided.
Require Import Equivalence EquivDec.
Require Import Coqlib.
Local Unset Elimination Schemes.
Local Unset Case Analysis Schemes.
Set Implicit Arguments.
The abstract signatures of trees
Module Type TREE.
Parameter elt:
Type.
Parameter elt_eq:
forall (
a b:
elt), {
a =
b} + {
a <>
b}.
Parameter t:
Type ->
Type.
Parameter empty:
forall (
A:
Type),
t A.
Parameter get:
forall (
A:
Type),
elt ->
t A ->
option A.
Parameter set:
forall (
A:
Type),
elt ->
A ->
t A ->
t A.
Parameter remove:
forall (
A:
Type),
elt ->
t A ->
t A.
The ``good variables'' properties for trees, expressing
commutations between get, set and remove.
Axiom gempty:
forall (
A:
Type) (
i:
elt),
get i (
empty A) =
None.
Axiom gss:
forall (
A:
Type) (
i:
elt) (
x:
A) (
m:
t A),
get i (
set i x m) =
Some x.
Axiom gso:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
i <>
j ->
get i (
set j x m) =
get i m.
Axiom gsspec:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
get i (
set j x m) =
if elt_eq i j then Some x else get i m.
Axiom grs:
forall (
A:
Type) (
i:
elt) (
m:
t A),
get i (
remove i m) =
None.
Axiom gro:
forall (
A:
Type) (
i j:
elt) (
m:
t A),
i <>
j ->
get i (
remove j m) =
get i m.
Axiom grspec:
forall (
A:
Type) (
i j:
elt) (
m:
t A),
get i (
remove j m) =
if elt_eq i j then None else get i m.
Extensional equality between trees.
Parameter beq:
forall (
A:
Type), (
A ->
A ->
bool) ->
t A ->
t A ->
bool.
Axiom beq_correct:
forall (
A:
Type) (
eqA:
A ->
A ->
bool) (
t1 t2:
t A),
beq eqA t1 t2 =
true <->
(
forall (
x:
elt),
match get x t1,
get x t2 with
|
None,
None =>
True
|
Some y1,
Some y2 =>
eqA y1 y2 =
true
|
_,
_ =>
False
end).
Applying a function to all data of a tree.
Parameter map:
forall (
A B:
Type), (
elt ->
A ->
B) ->
t A ->
t B.
Axiom gmap:
forall (
A B:
Type) (
f:
elt ->
A ->
B) (
i:
elt) (
m:
t A),
get i (
map f m) =
option_map (
f i) (
get i m).
Same as map, but the function does not receive the elt argument.
Parameter map1:
forall (
A B:
Type), (
A ->
B) ->
t A ->
t B.
Axiom gmap1:
forall (
A B:
Type) (
f:
A ->
B) (
i:
elt) (
m:
t A),
get i (
map1 f m) =
option_map f (
get i m).
Applying a function pairwise to all data of two trees.
Parameter combine:
forall (
A B C:
Type), (
option A ->
option B ->
option C) ->
t A ->
t B ->
t C.
Axiom gcombine:
forall (
A B C:
Type) (
f:
option A ->
option B ->
option C),
f None None =
None ->
forall (
m1:
t A) (
m2:
t B) (
i:
elt),
get i (
combine f m1 m2) =
f (
get i m1) (
get i m2).
Enumerating the bindings of a tree.
Parameter elements:
forall (
A:
Type),
t A ->
list (
elt *
A).
Axiom elements_correct:
forall (
A:
Type) (
m:
t A) (
i:
elt) (
v:
A),
get i m =
Some v ->
In (
i,
v) (
elements m).
Axiom elements_complete:
forall (
A:
Type) (
m:
t A) (
i:
elt) (
v:
A),
In (
i,
v) (
elements m) ->
get i m =
Some v.
Axiom elements_keys_norepet:
forall (
A:
Type) (
m:
t A),
list_norepet (
List.map (@
fst elt A) (
elements m)).
Axiom elements_extensional:
forall (
A:
Type) (
m n:
t A),
(
forall i,
get i m =
get i n) ->
elements m =
elements n.
Axiom elements_remove:
forall (
A:
Type)
i v (
m:
t A),
get i m =
Some v ->
exists l1 l2,
elements m =
l1 ++ (
i,
v) ::
l2 /\
elements (
remove i m) =
l1 ++
l2.
Folding a function over all bindings of a tree.
Parameter fold:
forall (
A B:
Type), (
B ->
elt ->
A ->
B) ->
t A ->
B ->
B.
Axiom fold_spec:
forall (
A B:
Type) (
f:
B ->
elt ->
A ->
B) (
v:
B) (
m:
t A),
fold f m v =
List.fold_left (
fun a p =>
f a (
fst p) (
snd p)) (
elements m)
v.
Same as fold, but the function does not receive the elt argument.
Parameter fold1:
forall (
A B:
Type), (
B ->
A ->
B) ->
t A ->
B ->
B.
Axiom fold1_spec:
forall (
A B:
Type) (
f:
B ->
A ->
B) (
v:
B) (
m:
t A),
fold1 f m v =
List.fold_left (
fun a p =>
f a (
snd p)) (
elements m)
v.
End TREE.
The abstract signatures of maps
Module Type MAP.
Parameter elt:
Type.
Parameter elt_eq:
forall (
a b:
elt), {
a =
b} + {
a <>
b}.
Parameter t:
Type ->
Type.
Parameter init:
forall (
A:
Type),
A ->
t A.
Parameter get:
forall (
A:
Type),
elt ->
t A ->
A.
Parameter set:
forall (
A:
Type),
elt ->
A ->
t A ->
t A.
Axiom gi:
forall (
A:
Type) (
i:
elt) (
x:
A),
get i (
init x) =
x.
Axiom gss:
forall (
A:
Type) (
i:
elt) (
x:
A) (
m:
t A),
get i (
set i x m) =
x.
Axiom gso:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
i <>
j ->
get i (
set j x m) =
get i m.
Axiom gsspec:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
get i (
set j x m) =
if elt_eq i j then x else get i m.
Axiom gsident:
forall (
A:
Type) (
i j:
elt) (
m:
t A),
get j (
set i (
get i m)
m) =
get j m.
Parameter map:
forall (
A B:
Type), (
A ->
B) ->
t A ->
t B.
Axiom gmap:
forall (
A B:
Type) (
f:
A ->
B) (
i:
elt) (
m:
t A),
get i (
map f m) =
f(
get i m).
End MAP.
An implementation of trees over type positive
Module PTree <:
TREE.
Definition elt :=
positive.
Definition elt_eq :=
peq.
Inductive tree (
A :
Type) :
Type :=
|
Leaf :
tree A
|
Node :
tree A ->
option A ->
tree A ->
tree A.
Arguments Leaf {
A}.
Arguments Node [
A].
Scheme tree_ind :=
Induction for tree Sort Prop.
Definition t :=
tree.
Definition empty (
A :
Type) := (
Leaf :
t A).
Fixpoint get (
A :
Type) (
i :
positive) (
m :
t A) {
struct i} :
option A :=
match m with
|
Leaf =>
None
|
Node l o r =>
match i with
|
xH =>
o
|
xO ii =>
get ii l
|
xI ii =>
get ii r
end
end.
Fixpoint set (
A :
Type) (
i :
positive) (
v :
A) (
m :
t A) {
struct i} :
t A :=
match m with
|
Leaf =>
match i with
|
xH =>
Node Leaf (
Some v)
Leaf
|
xO ii =>
Node (
set ii v Leaf)
None Leaf
|
xI ii =>
Node Leaf None (
set ii v Leaf)
end
|
Node l o r =>
match i with
|
xH =>
Node l (
Some v)
r
|
xO ii =>
Node (
set ii v l)
o r
|
xI ii =>
Node l o (
set ii v r)
end
end.
Fixpoint remove (
A :
Type) (
i :
positive) (
m :
t A) {
struct i} :
t A :=
match i with
|
xH =>
match m with
|
Leaf =>
Leaf
|
Node Leaf o Leaf =>
Leaf
|
Node l o r =>
Node l None r
end
|
xO ii =>
match m with
|
Leaf =>
Leaf
|
Node l None Leaf =>
match remove ii l with
|
Leaf =>
Leaf
|
mm =>
Node mm None Leaf
end
|
Node l o r =>
Node (
remove ii l)
o r
end
|
xI ii =>
match m with
|
Leaf =>
Leaf
|
Node Leaf None r =>
match remove ii r with
|
Leaf =>
Leaf
|
mm =>
Node Leaf None mm
end
|
Node l o r =>
Node l o (
remove ii r)
end
end.
Theorem gempty:
forall (
A:
Type) (
i:
positive),
get i (
empty A) =
None.
Proof.
induction i; simpl; auto.
Qed.
Theorem gss:
forall (
A:
Type) (
i:
positive) (
x:
A) (
m:
t A),
get i (
set i x m) =
Some x.
Proof.
induction i; destruct m; simpl; auto.
Qed.
Lemma gleaf :
forall (
A :
Type) (
i :
positive),
get i (
Leaf :
t A) =
None.
Proof.
Theorem gso:
forall (
A:
Type) (
i j:
positive) (
x:
A) (
m:
t A),
i <>
j ->
get i (
set j x m) =
get i m.
Proof.
induction i;
intros;
destruct j;
destruct m;
simpl;
try rewrite <- (
gleaf A i);
auto;
try apply IHi;
congruence.
Qed.
Theorem gsspec:
forall (
A:
Type) (
i j:
positive) (
x:
A) (
m:
t A),
get i (
set j x m) =
if peq i j then Some x else get i m.
Proof.
intros.
destruct (
peq i j); [
rewrite e;
apply gss |
apply gso;
auto ].
Qed.
Theorem gsident:
forall (
A:
Type) (
i:
positive) (
m:
t A) (
v:
A),
get i m =
Some v ->
set i v m =
m.
Proof.
induction i; intros; destruct m; simpl; simpl in H; try congruence.
rewrite (IHi m2 v H); congruence.
rewrite (IHi m1 v H); congruence.
Qed.
Theorem set2:
forall (
A:
Type) (
i:
elt) (
m:
t A) (
v1 v2:
A),
set i v2 (
set i v1 m) =
set i v2 m.
Proof.
induction i; intros; destruct m; simpl; try (rewrite IHi); auto.
Qed.
Lemma rleaf :
forall (
A :
Type) (
i :
positive),
remove i (
Leaf :
t A) =
Leaf.
Proof.
destruct i; simpl; auto. Qed.
Theorem grs:
forall (
A:
Type) (
i:
positive) (
m:
t A),
get i (
remove i m) =
None.
Proof.
induction i;
destruct m.
simpl;
auto.
destruct m1;
destruct o;
destruct m2 as [ |
ll oo rr];
simpl;
auto.
rewrite (
rleaf A i);
auto.
cut (
get i (
remove i (
Node ll oo rr)) =
None).
destruct (
remove i (
Node ll oo rr));
auto;
apply IHi.
apply IHi.
simpl;
auto.
destruct m1 as [ |
ll oo rr];
destruct o;
destruct m2;
simpl;
auto.
rewrite (
rleaf A i);
auto.
cut (
get i (
remove i (
Node ll oo rr)) =
None).
destruct (
remove i (
Node ll oo rr));
auto;
apply IHi.
apply IHi.
simpl;
auto.
destruct m1;
destruct m2;
simpl;
auto.
Qed.
Theorem gro:
forall (
A:
Type) (
i j:
positive) (
m:
t A),
i <>
j ->
get i (
remove j m) =
get i m.
Proof.
induction i;
intros;
destruct j;
destruct m;
try rewrite (
rleaf A (
xI j));
try rewrite (
rleaf A (
xO j));
try rewrite (
rleaf A 1);
auto;
destruct m1;
destruct o;
destruct m2;
simpl;
try apply IHi;
try congruence;
try rewrite (
rleaf A j);
auto;
try rewrite (
gleaf A i);
auto.
cut (
get i (
remove j (
Node m2_1 o m2_2)) =
get i (
Node m2_1 o m2_2));
[
destruct (
remove j (
Node m2_1 o m2_2));
try rewrite (
gleaf A i);
auto
|
apply IHi;
congruence ].
destruct (
remove j (
Node m1_1 o0 m1_2));
simpl;
try rewrite (
gleaf A i);
auto.
destruct (
remove j (
Node m2_1 o m2_2));
simpl;
try rewrite (
gleaf A i);
auto.
cut (
get i (
remove j (
Node m1_1 o0 m1_2)) =
get i (
Node m1_1 o0 m1_2));
[
destruct (
remove j (
Node m1_1 o0 m1_2));
try rewrite (
gleaf A i);
auto
|
apply IHi;
congruence ].
destruct (
remove j (
Node m2_1 o m2_2));
simpl;
try rewrite (
gleaf A i);
auto.
destruct (
remove j (
Node m1_1 o0 m1_2));
simpl;
try rewrite (
gleaf A i);
auto.
Qed.
Theorem grspec:
forall (
A:
Type) (
i j:
elt) (
m:
t A),
get i (
remove j m) =
if elt_eq i j then None else get i m.
Proof.
intros.
destruct (
elt_eq i j).
subst j.
apply grs.
apply gro;
auto.
Qed.
Section BOOLEAN_EQUALITY.
Variable A:
Type.
Variable beqA:
A ->
A ->
bool.
Fixpoint bempty (
m:
t A) :
bool :=
match m with
|
Leaf =>
true
|
Node l None r =>
bempty l &&
bempty r
|
Node l (
Some _)
r =>
false
end.
Fixpoint beq (
m1 m2:
t A) {
struct m1} :
bool :=
match m1,
m2 with
|
Leaf,
_ =>
bempty m2
|
_,
Leaf =>
bempty m1
|
Node l1 o1 r1,
Node l2 o2 r2 =>
match o1,
o2 with
|
None,
None =>
true
|
Some y1,
Some y2 =>
beqA y1 y2
|
_,
_ =>
false
end
&&
beq l1 l2 &&
beq r1 r2
end.
Lemma bempty_correct:
forall m,
bempty m =
true <-> (
forall x,
get x m =
None).
Proof.
induction m;
simpl.
split;
intros.
apply gleaf.
auto.
destruct o;
split;
intros.
congruence.
generalize (
H xH);
simpl;
congruence.
destruct (
andb_prop _ _ H).
rewrite IHm1 in H0.
rewrite IHm2 in H1.
destruct x;
simpl;
auto.
apply andb_true_intro;
split.
apply IHm1.
intros;
apply (
H (
xO x)).
apply IHm2.
intros;
apply (
H (
xI x)).
Qed.
Lemma beq_correct:
forall m1 m2,
beq m1 m2 =
true <->
(
forall (
x:
elt),
match get x m1,
get x m2 with
|
None,
None =>
True
|
Some y1,
Some y2 =>
beqA y1 y2 =
true
|
_,
_ =>
False
end).
Proof.
induction m1;
intros.
-
simpl.
rewrite bempty_correct.
split;
intros.
rewrite gleaf.
rewrite H.
auto.
generalize (
H x).
rewrite gleaf.
destruct (
get x m2);
tauto.
-
destruct m2.
+
unfold beq.
rewrite bempty_correct.
split;
intros.
rewrite H.
rewrite gleaf.
auto.
generalize (
H x).
rewrite gleaf.
destruct (
get x (
Node m1_1 o m1_2));
tauto.
+
simpl.
split;
intros.
*
destruct (
andb_prop _ _ H).
destruct (
andb_prop _ _ H0).
rewrite IHm1_1 in H3.
rewrite IHm1_2 in H1.
destruct x;
simpl.
apply H1.
apply H3.
destruct o;
destruct o0;
auto ||
congruence.
*
apply andb_true_intro.
split.
apply andb_true_intro.
split.
generalize (
H xH);
simpl.
destruct o;
destruct o0;
tauto.
apply IHm1_1.
intros;
apply (
H (
xO x)).
apply IHm1_2.
intros;
apply (
H (
xI x)).
Qed.
End BOOLEAN_EQUALITY.
Fixpoint prev_append (
i j:
positive) {
struct i} :
positive :=
match i with
|
xH =>
j
|
xI i' =>
prev_append i' (
xI j)
|
xO i' =>
prev_append i' (
xO j)
end.
Definition prev (
i:
positive) :
positive :=
prev_append i xH.
Lemma prev_append_prev i j:
prev (
prev_append i j) =
prev_append j i.
Proof.
revert j.
unfold prev.
induction i as [
i IH|
i IH|]. 3:
reflexivity.
intros j.
simpl.
rewrite IH.
reflexivity.
intros j.
simpl.
rewrite IH.
reflexivity.
Qed.
Lemma prev_involutive i :
prev (
prev i) =
i.
Proof (
prev_append_prev i xH).
Lemma prev_append_inj i j j' :
prev_append i j =
prev_append i j' ->
j =
j'.
Proof.
revert j j'.
induction i as [i Hi|i Hi|]; intros j j' H; auto;
specialize (Hi _ _ H); congruence.
Qed.
Fixpoint xmap (
A B :
Type) (
f :
positive ->
A ->
B) (
m :
t A) (
i :
positive)
{
struct m} :
t B :=
match m with
|
Leaf =>
Leaf
|
Node l o r =>
Node (
xmap f l (
xO i))
(
match o with None =>
None |
Some x =>
Some (
f (
prev i)
x)
end)
(
xmap f r (
xI i))
end.
Definition map (
A B :
Type) (
f :
positive ->
A ->
B)
m :=
xmap f m xH.
Lemma xgmap:
forall (
A B:
Type) (
f:
positive ->
A ->
B) (
i j :
positive) (
m:
t A),
get i (
xmap f m j) =
option_map (
f (
prev (
prev_append i j))) (
get i m).
Proof.
induction i; intros; destruct m; simpl; auto.
Qed.
Theorem gmap:
forall (
A B:
Type) (
f:
positive ->
A ->
B) (
i:
positive) (
m:
t A),
get i (
map f m) =
option_map (
f i) (
get i m).
Proof.
Fixpoint map1 (
A B:
Type) (
f:
A ->
B) (
m:
t A) {
struct m} :
t B :=
match m with
|
Leaf =>
Leaf
|
Node l o r =>
Node (
map1 f l) (
option_map f o) (
map1 f r)
end.
Theorem gmap1:
forall (
A B:
Type) (
f:
A ->
B) (
i:
elt) (
m:
t A),
get i (
map1 f m) =
option_map f (
get i m).
Proof.
induction i; intros; destruct m; simpl; auto.
Qed.
Definition Node' (
A:
Type) (
l:
t A) (
x:
option A) (
r:
t A):
t A :=
match l,
x,
r with
|
Leaf,
None,
Leaf =>
Leaf
|
_,
_,
_ =>
Node l x r
end.
Lemma gnode':
forall (
A:
Type) (
l r:
t A) (
x:
option A) (
i:
positive),
get i (
Node'
l x r) =
get i (
Node l x r).
Proof.
intros.
unfold Node'.
destruct l;
destruct x;
destruct r;
auto.
destruct i;
simpl;
auto;
rewrite gleaf;
auto.
Qed.
Fixpoint filter1 (
A:
Type) (
pred:
A ->
bool) (
m:
t A) {
struct m} :
t A :=
match m with
|
Leaf =>
Leaf
|
Node l o r =>
let o' :=
match o with None =>
None |
Some x =>
if pred x then o else None end in
Node' (
filter1 pred l)
o' (
filter1 pred r)
end.
Theorem gfilter1:
forall (
A:
Type) (
pred:
A ->
bool) (
i:
elt) (
m:
t A),
get i (
filter1 pred m) =
match get i m with None =>
None |
Some x =>
if pred x then Some x else None end.
Proof.
intros until m.
revert m i.
induction m;
simpl;
intros.
rewrite gleaf;
auto.
rewrite gnode'.
destruct i;
simpl;
auto.
destruct o;
auto.
Qed.
Section COMBINE.
Variables A B C:
Type.
Variable f:
option A ->
option B ->
option C.
Hypothesis f_none_none:
f None None =
None.
Fixpoint xcombine_l (
m :
t A) {
struct m} :
t C :=
match m with
|
Leaf =>
Leaf
|
Node l o r =>
Node' (
xcombine_l l) (
f o None) (
xcombine_l r)
end.
Lemma xgcombine_l :
forall (
m:
t A) (
i :
positive),
get i (
xcombine_l m) =
f (
get i m)
None.
Proof.
induction m;
intros;
simpl.
repeat rewrite gleaf.
auto.
rewrite gnode'.
destruct i;
simpl;
auto.
Qed.
Fixpoint xcombine_r (
m :
t B) {
struct m} :
t C :=
match m with
|
Leaf =>
Leaf
|
Node l o r =>
Node' (
xcombine_r l) (
f None o) (
xcombine_r r)
end.
Lemma xgcombine_r :
forall (
m:
t B) (
i :
positive),
get i (
xcombine_r m) =
f None (
get i m).
Proof.
induction m;
intros;
simpl.
repeat rewrite gleaf.
auto.
rewrite gnode'.
destruct i;
simpl;
auto.
Qed.
Fixpoint combine (
m1:
t A) (
m2:
t B) {
struct m1} :
t C :=
match m1 with
|
Leaf =>
xcombine_r m2
|
Node l1 o1 r1 =>
match m2 with
|
Leaf =>
xcombine_l m1
|
Node l2 o2 r2 =>
Node' (
combine l1 l2) (
f o1 o2) (
combine r1 r2)
end
end.
Theorem gcombine:
forall (
m1:
t A) (
m2:
t B) (
i:
positive),
get i (
combine m1 m2) =
f (
get i m1) (
get i m2).
Proof.
induction m1;
intros;
simpl.
rewrite gleaf.
apply xgcombine_r.
destruct m2;
simpl.
rewrite gleaf.
rewrite <-
xgcombine_l.
auto.
repeat rewrite gnode'.
destruct i;
simpl;
auto.
Qed.
End COMBINE.
Lemma xcombine_lr :
forall (
A B:
Type) (
f g :
option A ->
option A ->
option B) (
m :
t A),
(
forall (
i j :
option A),
f i j =
g j i) ->
xcombine_l f m =
xcombine_r g m.
Proof.
induction m; intros; simpl; auto.
rewrite IHm1; auto.
rewrite IHm2; auto.
rewrite H; auto.
Qed.
Theorem combine_commut:
forall (
A B:
Type) (
f g:
option A ->
option A ->
option B),
(
forall (
i j:
option A),
f i j =
g j i) ->
forall (
m1 m2:
t A),
combine f m1 m2 =
combine g m2 m1.
Proof.
intros A B f g EQ1.
assert (
EQ2:
forall (
i j:
option A),
g i j =
f j i).
intros;
auto.
induction m1;
intros;
destruct m2;
simpl;
try rewrite EQ1;
repeat rewrite (
xcombine_lr f g);
repeat rewrite (
xcombine_lr g f);
auto.
rewrite IHm1_1.
rewrite IHm1_2.
auto.
Qed.
Fixpoint xelements (
A :
Type) (
m :
t A) (
i :
positive)
(
k:
list (
positive *
A)) {
struct m}
:
list (
positive *
A) :=
match m with
|
Leaf =>
k
|
Node l None r =>
xelements l (
xO i) (
xelements r (
xI i)
k)
|
Node l (
Some x)
r =>
xelements l (
xO i)
((
prev i,
x) ::
xelements r (
xI i)
k)
end.
Definition elements (
A:
Type) (
m :
t A) :=
xelements m xH nil.
Remark xelements_append:
forall A (
m:
t A)
i k1 k2,
xelements m i (
k1 ++
k2) =
xelements m i k1 ++
k2.
Proof.
induction m; intros; simpl.
- auto.
- destruct o; rewrite IHm2; rewrite <- IHm1; auto.
Qed.
Remark xelements_leaf:
forall A i,
xelements (@
Leaf A)
i nil =
nil.
Proof.
intros; reflexivity.
Qed.
Remark xelements_node:
forall A (
m1:
t A)
o (
m2:
t A)
i,
xelements (
Node m1 o m2)
i nil =
xelements m1 (
xO i)
nil
++
match o with None =>
nil |
Some v => (
prev i,
v) ::
nil end
++
xelements m2 (
xI i)
nil.
Proof.
Lemma xelements_incl:
forall (
A:
Type) (
m:
t A) (
i :
positive)
k x,
In x k ->
In x (
xelements m i k).
Proof.
induction m; intros; simpl.
auto.
destruct o.
apply IHm1. simpl; right; auto.
auto.
Qed.
Lemma xelements_correct:
forall (
A:
Type) (
m:
t A) (
i j :
positive) (
v:
A)
k,
get i m =
Some v ->
In (
prev (
prev_append i j),
v) (
xelements m j k).
Proof.
induction m;
intros.
rewrite (
gleaf A i)
in H;
congruence.
destruct o;
destruct i;
simpl;
simpl in H.
apply xelements_incl.
right.
auto.
auto.
inv H.
apply xelements_incl.
left.
reflexivity.
apply xelements_incl.
auto.
auto.
inv H.
Qed.
Theorem elements_correct:
forall (
A:
Type) (
m:
t A) (
i:
positive) (
v:
A),
get i m =
Some v ->
In (
i,
v) (
elements m).
Proof.
Lemma in_xelements:
forall (
A:
Type) (
m:
t A) (
i k:
positive) (
v:
A) ,
In (
k,
v) (
xelements m i nil) ->
exists j,
k =
prev (
prev_append j i) /\
get j m =
Some v.
Proof.
induction m;
intros.
-
rewrite xelements_leaf in H.
contradiction.
-
rewrite xelements_node in H.
rewrite !
in_app_iff in H.
destruct H as [
P | [
P |
P]].
+
exploit IHm1;
eauto.
intros (
j &
Q &
R).
exists (
xO j);
auto.
+
destruct o;
simpl in P;
intuition auto.
inv H.
exists xH;
auto.
+
exploit IHm2;
eauto.
intros (
j &
Q &
R).
exists (
xI j);
auto.
Qed.
Theorem elements_complete:
forall (
A:
Type) (
m:
t A) (
i:
positive) (
v:
A),
In (
i,
v) (
elements m) ->
get i m =
Some v.
Proof.
Definition xkeys (
A:
Type) (
m:
t A) (
i:
positive) :=
List.map (@
fst positive A) (
xelements m i nil).
Remark xkeys_leaf:
forall A i,
xkeys (@
Leaf A)
i =
nil.
Proof.
intros; reflexivity.
Qed.
Remark xkeys_node:
forall A (
m1:
t A)
o (
m2:
t A)
i,
xkeys (
Node m1 o m2)
i =
xkeys m1 (
xO i)
++
match o with None =>
nil |
Some v =>
prev i ::
nil end
++
xkeys m2 (
xI i).
Proof.
Lemma in_xkeys:
forall (
A:
Type) (
m:
t A) (
i k:
positive),
In k (
xkeys m i) ->
(
exists j,
k =
prev (
prev_append j i)).
Proof.
Lemma xelements_keys_norepet:
forall (
A:
Type) (
m:
t A) (
i:
positive),
list_norepet (
xkeys m i).
Proof.
Theorem elements_keys_norepet:
forall (
A:
Type) (
m:
t A),
list_norepet (
List.map (@
fst elt A) (
elements m)).
Proof.
Remark xelements_empty:
forall (
A:
Type) (
m:
t A)
i, (
forall i,
get i m =
None) ->
xelements m i nil =
nil.
Proof.
induction m;
intros.
auto.
rewrite xelements_node.
rewrite IHm1,
IHm2.
destruct o;
auto.
generalize (
H xH);
simpl;
congruence.
intros.
apply (
H (
xI i0)).
intros.
apply (
H (
xO i0)).
Qed.
Theorem elements_canonical_order':
forall (
A B:
Type) (
R:
A ->
B ->
Prop) (
m:
t A) (
n:
t B),
(
forall i,
option_rel R (
get i m) (
get i n)) ->
list_forall2
(
fun i_x i_y =>
fst i_x =
fst i_y /\
R (
snd i_x) (
snd i_y))
(
elements m) (
elements n).
Proof.
intros until n.
unfold elements.
generalize 1%
positive.
revert m n.
induction m;
intros.
-
simpl.
rewrite xelements_empty.
constructor.
intros.
specialize (
H i).
rewrite gempty in H.
inv H;
auto.
-
destruct n as [ |
n1 o'
n2 ].
+
rewrite (
xelements_empty (
Node m1 o m2)).
simpl;
constructor.
intros.
specialize (
H i).
rewrite gempty in H.
inv H;
auto.
+
rewrite !
xelements_node.
repeat apply list_forall2_app.
apply IHm1.
intros.
apply (
H (
xO i)).
generalize (
H xH);
simpl;
intros OR;
inv OR.
constructor.
constructor.
auto.
constructor.
apply IHm2.
intros.
apply (
H (
xI i)).
Qed.
Theorem elements_canonical_order:
forall (
A B:
Type) (
R:
A ->
B ->
Prop) (
m:
t A) (
n:
t B),
(
forall i x,
get i m =
Some x ->
exists y,
get i n =
Some y /\
R x y) ->
(
forall i y,
get i n =
Some y ->
exists x,
get i m =
Some x /\
R x y) ->
list_forall2
(
fun i_x i_y =>
fst i_x =
fst i_y /\
R (
snd i_x) (
snd i_y))
(
elements m) (
elements n).
Proof.
intros.
apply elements_canonical_order'.
intros.
destruct (
get i m)
as [
x|]
eqn:
GM.
exploit H;
eauto.
intros (
y &
P &
Q).
rewrite P;
constructor;
auto.
destruct (
get i n)
as [
y|]
eqn:
GN.
exploit H0;
eauto.
intros (
x &
P &
Q).
congruence.
constructor.
Qed.
Theorem elements_extensional:
forall (
A:
Type) (
m n:
t A),
(
forall i,
get i m =
get i n) ->
elements m =
elements n.
Proof.
intros.
exploit (@
elements_canonical_order'
_ _ (
fun (
x y:
A) =>
x =
y)
m n).
intros.
rewrite H.
destruct (
get i n);
constructor;
auto.
induction 1.
auto.
destruct a1 as [
a2 a3];
destruct b1 as [
b2 b3];
simpl in *.
destruct H0.
congruence.
Qed.
Lemma xelements_remove:
forall (
A:
Type)
v (
m:
t A)
i j,
get i m =
Some v ->
exists l1 l2,
xelements m j nil =
l1 ++ (
prev (
prev_append i j),
v) ::
l2
/\
xelements (
remove i m)
j nil =
l1 ++
l2.
Proof.
induction m;
intros.
-
rewrite gleaf in H;
discriminate.
-
assert (
REMOVE:
xelements (
remove i (
Node m1 o m2))
j nil =
xelements (
match i with
|
xH =>
Node m1 None m2
|
xO ii =>
Node (
remove ii m1)
o m2
|
xI ii =>
Node m1 o (
remove ii m2)
end)
j nil).
{
destruct i;
simpl remove.
destruct m1;
auto.
destruct o;
auto.
destruct (
remove i m2);
auto.
destruct o;
auto.
destruct m2;
auto.
destruct (
remove i m1);
auto.
destruct m1;
auto.
destruct m2;
auto.
}
rewrite REMOVE.
destruct i;
simpl in H.
+
destruct (
IHm2 i (
xI j)
H)
as (
l1 &
l2 &
EQ &
EQ').
exists (
xelements m1 (
xO j)
nil ++
match o with None =>
nil |
Some x => (
prev j,
x) ::
nil end ++
l1);
exists l2;
split.
rewrite xelements_node,
EQ, !
app_ass.
auto.
rewrite xelements_node,
EQ', !
app_ass.
auto.
+
destruct (
IHm1 i (
xO j)
H)
as (
l1 &
l2 &
EQ &
EQ').
exists l1;
exists (
l2 ++
match o with None =>
nil |
Some x => (
prev j,
x) ::
nil end ++
xelements m2 (
xI j)
nil);
split.
rewrite xelements_node,
EQ, !
app_ass.
auto.
rewrite xelements_node,
EQ', !
app_ass.
auto.
+
subst o.
exists (
xelements m1 (
xO j)
nil);
exists (
xelements m2 (
xI j)
nil);
split.
rewrite xelements_node.
rewrite prev_append_prev.
auto.
rewrite xelements_node;
auto.
Qed.
Theorem elements_remove:
forall (
A:
Type)
i v (
m:
t A),
get i m =
Some v ->
exists l1 l2,
elements m =
l1 ++ (
i,
v) ::
l2 /\
elements (
remove i m) =
l1 ++
l2.
Proof.
Fixpoint xfold (
A B:
Type) (
f:
B ->
positive ->
A ->
B)
(
i:
positive) (
m:
t A) (
v:
B) {
struct m} :
B :=
match m with
|
Leaf =>
v
|
Node l None r =>
let v1 :=
xfold f (
xO i)
l v in
xfold f (
xI i)
r v1
|
Node l (
Some x)
r =>
let v1 :=
xfold f (
xO i)
l v in
let v2 :=
f v1 (
prev i)
x in
xfold f (
xI i)
r v2
end.
Definition fold (
A B :
Type) (
f:
B ->
positive ->
A ->
B) (
m:
t A) (
v:
B) :=
xfold f xH m v.
Lemma xfold_xelements:
forall (
A B:
Type) (
f:
B ->
positive ->
A ->
B)
m i v l,
List.fold_left (
fun a p =>
f a (
fst p) (
snd p))
l (
xfold f i m v) =
List.fold_left (
fun a p =>
f a (
fst p) (
snd p)) (
xelements m i l)
v.
Proof.
induction m; intros.
simpl. auto.
destruct o; simpl.
rewrite <- IHm1. simpl. rewrite <- IHm2. auto.
rewrite <- IHm1. rewrite <- IHm2. auto.
Qed.
Theorem fold_spec:
forall (
A B:
Type) (
f:
B ->
positive ->
A ->
B) (
v:
B) (
m:
t A),
fold f m v =
List.fold_left (
fun a p =>
f a (
fst p) (
snd p)) (
elements m)
v.
Proof.
Fixpoint fold1 (
A B:
Type) (
f:
B ->
A ->
B) (
m:
t A) (
v:
B) {
struct m} :
B :=
match m with
|
Leaf =>
v
|
Node l None r =>
let v1 :=
fold1 f l v in
fold1 f r v1
|
Node l (
Some x)
r =>
let v1 :=
fold1 f l v in
let v2 :=
f v1 x in
fold1 f r v2
end.
Lemma fold1_xelements:
forall (
A B:
Type) (
f:
B ->
A ->
B)
m i v l,
List.fold_left (
fun a p =>
f a (
snd p))
l (
fold1 f m v) =
List.fold_left (
fun a p =>
f a (
snd p)) (
xelements m i l)
v.
Proof.
induction m; intros.
simpl. auto.
destruct o; simpl.
rewrite <- IHm1. simpl. rewrite <- IHm2. auto.
rewrite <- IHm1. rewrite <- IHm2. auto.
Qed.
Theorem fold1_spec:
forall (
A B:
Type) (
f:
B ->
A ->
B) (
v:
B) (
m:
t A),
fold1 f m v =
List.fold_left (
fun a p =>
f a (
snd p)) (
elements m)
v.
Proof.
End PTree.
An implementation of maps over type positive
Module PMap <:
MAP.
Definition elt :=
positive.
Definition elt_eq :=
peq.
Definition t (
A :
Type) :
Type := (
A *
PTree.t A)%
type.
Definition init (
A :
Type) (
x :
A) :=
(
x,
PTree.empty A).
Definition get (
A :
Type) (
i :
positive) (
m :
t A) :=
match PTree.get i (
snd m)
with
|
Some x =>
x
|
None =>
fst m
end.
Definition set (
A :
Type) (
i :
positive) (
x :
A) (
m :
t A) :=
(
fst m,
PTree.set i x (
snd m)).
Theorem gi:
forall (
A:
Type) (
i:
positive) (
x:
A),
get i (
init x) =
x.
Proof.
Theorem gss:
forall (
A:
Type) (
i:
positive) (
x:
A) (
m:
t A),
get i (
set i x m) =
x.
Proof.
intros.
unfold get.
unfold set.
simpl.
rewrite PTree.gss.
auto.
Qed.
Theorem gso:
forall (
A:
Type) (
i j:
positive) (
x:
A) (
m:
t A),
i <>
j ->
get i (
set j x m) =
get i m.
Proof.
intros.
unfold get.
unfold set.
simpl.
rewrite PTree.gso;
auto.
Qed.
Theorem gsspec:
forall (
A:
Type) (
i j:
positive) (
x:
A) (
m:
t A),
get i (
set j x m) =
if peq i j then x else get i m.
Proof.
intros.
destruct (
peq i j).
rewrite e.
apply gss.
auto.
apply gso.
auto.
Qed.
Theorem gsident:
forall (
A:
Type) (
i j:
positive) (
m:
t A),
get j (
set i (
get i m)
m) =
get j m.
Proof.
intros.
destruct (
peq i j).
rewrite e.
rewrite gss.
auto.
rewrite gso;
auto.
Qed.
Definition map (
A B :
Type) (
f :
A ->
B) (
m :
t A) :
t B :=
(
f (
fst m),
PTree.map1 f (
snd m)).
Theorem gmap:
forall (
A B:
Type) (
f:
A ->
B) (
i:
positive) (
m:
t A),
get i (
map f m) =
f(
get i m).
Proof.
Theorem set2:
forall (
A:
Type) (
i:
elt) (
x y:
A) (
m:
t A),
set i y (
set i x m) =
set i y m.
Proof.
intros.
unfold set.
simpl.
decEq.
apply PTree.set2.
Qed.
End PMap.
An implementation of maps over any type that injects into type positive
Module Type INDEXED_TYPE.
Parameter t:
Type.
Parameter index:
t ->
positive.
Axiom index_inj:
forall (
x y:
t),
index x =
index y ->
x =
y.
Parameter eq:
forall (
x y:
t), {
x =
y} + {
x <>
y}.
End INDEXED_TYPE.
Module IMap(
X:
INDEXED_TYPE).
Definition elt :=
X.t.
Definition elt_eq :=
X.eq.
Definition t :
Type ->
Type :=
PMap.t.
Definition init (
A:
Type) (
x:
A) :=
PMap.init x.
Definition get (
A:
Type) (
i:
X.t) (
m:
t A) :=
PMap.get (
X.index i)
m.
Definition set (
A:
Type) (
i:
X.t) (
v:
A) (
m:
t A) :=
PMap.set (
X.index i)
v m.
Definition map (
A B:
Type) (
f:
A ->
B) (
m:
t A) :
t B :=
PMap.map f m.
Lemma gi:
forall (
A:
Type) (
x:
A) (
i:
X.t),
get i (
init x) =
x.
Proof.
Lemma gss:
forall (
A:
Type) (
i:
X.t) (
x:
A) (
m:
t A),
get i (
set i x m) =
x.
Proof.
Lemma gso:
forall (
A:
Type) (
i j:
X.t) (
x:
A) (
m:
t A),
i <>
j ->
get i (
set j x m) =
get i m.
Proof.
Lemma gsspec:
forall (
A:
Type) (
i j:
X.t) (
x:
A) (
m:
t A),
get i (
set j x m) =
if X.eq i j then x else get i m.
Proof.
Lemma gmap:
forall (
A B:
Type) (
f:
A ->
B) (
i:
X.t) (
m:
t A),
get i (
map f m) =
f(
get i m).
Proof.
Lemma set2:
forall (
A:
Type) (
i:
elt) (
x y:
A) (
m:
t A),
set i y (
set i x m) =
set i y m.
Proof.
End IMap.
Module ZIndexed.
Definition t :=
Z.
Definition index (
z:
Z):
positive :=
match z with
|
Z0 =>
xH
|
Zpos p =>
xO p
|
Zneg p =>
xI p
end.
Lemma index_inj:
forall (
x y:
Z),
index x =
index y ->
x =
y.
Proof.
unfold index;
destruct x;
destruct y;
intros;
try discriminate;
try reflexivity.
congruence.
congruence.
Qed.
Definition eq :=
zeq.
End ZIndexed.
Module ZMap :=
IMap(
ZIndexed).
Module NIndexed.
Definition t :=
N.
Definition index (
n:
N):
positive :=
match n with
|
N0 =>
xH
|
Npos p =>
xO p
end.
Lemma index_inj:
forall (
x y:
N),
index x =
index y ->
x =
y.
Proof.
unfold index;
destruct x;
destruct y;
intros;
try discriminate;
try reflexivity.
congruence.
Qed.
Lemma eq:
forall (
x y:
N), {
x =
y} + {
x <>
y}.
Proof.
decide equality.
apply peq.
Qed.
End NIndexed.
Module NMap :=
IMap(
NIndexed).
An implementation of maps over any type with decidable equality
Module Type EQUALITY_TYPE.
Parameter t:
Type.
Parameter eq:
forall (
x y:
t), {
x =
y} + {
x <>
y}.
End EQUALITY_TYPE.
Module EMap(
X:
EQUALITY_TYPE) <:
MAP.
Definition elt :=
X.t.
Definition elt_eq :=
X.eq.
Definition t (
A:
Type) :=
X.t ->
A.
Definition init (
A:
Type) (
v:
A) :=
fun (
_:
X.t) =>
v.
Definition get (
A:
Type) (
x:
X.t) (
m:
t A) :=
m x.
Definition set (
A:
Type) (
x:
X.t) (
v:
A) (
m:
t A) :=
fun (
y:
X.t) =>
if X.eq y x then v else m y.
Lemma gi:
forall (
A:
Type) (
i:
elt) (
x:
A),
init x i =
x.
Proof.
intros. reflexivity.
Qed.
Lemma gss:
forall (
A:
Type) (
i:
elt) (
x:
A) (
m:
t A), (
set i x m)
i =
x.
Proof.
intros.
unfold set.
case (
X.eq i i);
intro.
reflexivity.
tauto.
Qed.
Lemma gso:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
i <>
j -> (
set j x m)
i =
m i.
Proof.
intros.
unfold set.
case (
X.eq i j);
intro.
congruence.
reflexivity.
Qed.
Lemma gsspec:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
get i (
set j x m) =
if elt_eq i j then x else get i m.
Proof.
intros.
unfold get,
set,
elt_eq.
reflexivity.
Qed.
Lemma gsident:
forall (
A:
Type) (
i j:
elt) (
m:
t A),
get j (
set i (
get i m)
m) =
get j m.
Proof.
intros.
unfold get,
set.
case (
X.eq j i);
intro.
congruence.
reflexivity.
Qed.
Definition map (
A B:
Type) (
f:
A ->
B) (
m:
t A) :=
fun (
x:
X.t) =>
f(
m x).
Lemma gmap:
forall (
A B:
Type) (
f:
A ->
B) (
i:
elt) (
m:
t A),
get i (
map f m) =
f(
get i m).
Proof.
intros.
unfold get,
map.
reflexivity.
Qed.
End EMap.
A partial implementation of trees over any type that injects into type positive
Module ITree(
X:
INDEXED_TYPE).
Definition elt :=
X.t.
Definition elt_eq :=
X.eq.
Definition t :
Type ->
Type :=
PTree.t.
Definition empty (
A:
Type):
t A :=
PTree.empty A.
Definition get (
A:
Type) (
k:
elt) (
m:
t A):
option A :=
PTree.get (
X.index k)
m.
Definition set (
A:
Type) (
k:
elt) (
v:
A) (
m:
t A):
t A :=
PTree.set (
X.index k)
v m.
Definition remove (
A:
Type) (
k:
elt) (
m:
t A):
t A :=
PTree.remove (
X.index k)
m.
Theorem gempty:
forall (
A:
Type) (
i:
elt),
get i (
empty A) =
None.
Proof.
Theorem gss:
forall (
A:
Type) (
i:
elt) (
x:
A) (
m:
t A),
get i (
set i x m) =
Some x.
Proof.
Theorem gso:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
i <>
j ->
get i (
set j x m) =
get i m.
Proof.
Theorem gsspec:
forall (
A:
Type) (
i j:
elt) (
x:
A) (
m:
t A),
get i (
set j x m) =
if elt_eq i j then Some x else get i m.
Proof.
intros.
destruct (
elt_eq i j).
subst j;
apply gss.
apply gso;
auto.
Qed.
Theorem grs:
forall (
A:
Type) (
i:
elt) (
m:
t A),
get i (
remove i m) =
None.
Proof.
Theorem gro:
forall (
A:
Type) (
i j:
elt) (
m:
t A),
i <>
j ->
get i (
remove j m) =
get i m.
Proof.
Theorem grspec:
forall (
A:
Type) (
i j:
elt) (
m:
t A),
get i (
remove j m) =
if elt_eq i j then None else get i m.
Proof.
intros.
destruct (
elt_eq i j).
subst j;
apply grs.
apply gro;
auto.
Qed.
Definition beq:
forall (
A:
Type), (
A ->
A ->
bool) ->
t A ->
t A ->
bool :=
PTree.beq.
Theorem beq_sound:
forall (
A:
Type) (
eqA:
A ->
A ->
bool) (
t1 t2:
t A),
beq eqA t1 t2 =
true ->
forall (
x:
elt),
match get x t1,
get x t2 with
|
None,
None =>
True
|
Some y1,
Some y2 =>
eqA y1 y2 =
true
|
_,
_ =>
False
end.
Proof.
Definition combine:
forall (
A B C:
Type), (
option A ->
option B ->
option C) ->
t A ->
t B ->
t C :=
PTree.combine.
Theorem gcombine:
forall (
A B C:
Type) (
f:
option A ->
option B ->
option C),
f None None =
None ->
forall (
m1:
t A) (
m2:
t B) (
i:
elt),
get i (
combine f m1 m2) =
f (
get i m1) (
get i m2).
Proof.
End ITree.
Module ZTree :=
ITree(
ZIndexed).
Additional properties over trees
Module Tree_Properties(
T:
TREE).
Two induction principles over fold.
Section TREE_FOLD_IND.
Variables V A:
Type.
Variable f:
A ->
T.elt ->
V ->
A.
Variable P:
T.t V ->
A ->
Type.
Variable init:
A.
Variable m_final:
T.t V.
Hypothesis H_base:
forall m,
(
forall k,
T.get k m =
None) ->
P m init.
Hypothesis H_rec:
forall m a k v,
T.get k m =
Some v ->
T.get k m_final =
Some v ->
P (
T.remove k m)
a ->
P m (
f a k v).
Let f' (
p :
T.elt *
V) (
a:
A) :=
f a (
fst p) (
snd p).
Let P' (
l:
list (
T.elt *
V)) (
a:
A) :
Type :=
forall m, (
forall k v,
In (
k,
v)
l <->
T.get k m =
Some v) ->
P m a.
Let H_base':
P'
nil init.
Proof.
intros m EQV.
apply H_base.
intros.
destruct (
T.get k m)
as [
v|]
eqn:
G;
auto.
apply EQV in G.
contradiction.
Qed.
Let H_rec':
forall k v l a,
~
In k (
List.map fst l) ->
T.get k m_final =
Some v ->
P'
l a ->
P' ((
k,
v) ::
l) (
f a k v).
Proof.
unfold P';
intros k v l a NOTIN FINAL HR m EQV.
set (
m0 :=
T.remove k m).
apply H_rec.
-
apply EQV.
simpl;
auto.
-
auto.
-
apply HR.
intros k'
v'.
rewrite T.grspec.
split;
intros;
destruct (
T.elt_eq k'
k).
+
subst k'.
elim NOTIN.
change k with (
fst (
k,
v')).
apply List.in_map;
auto.
+
apply EQV.
simpl;
auto.
+
congruence.
+
apply EQV in H.
simpl in H.
intuition congruence.
Qed.
Lemma fold_ind_aux:
forall l,
(
forall k v,
In (
k,
v)
l ->
T.get k m_final =
Some v) ->
list_norepet (
List.map fst l) ->
P'
l (
List.fold_right f'
init l).
Proof.
induction l as [ | [k v] l ]; simpl; intros FINAL NOREPET.
- apply H_base'.
- apply H_rec'.
+ inv NOREPET. auto.
+ apply FINAL. auto.
+ apply IHl. auto. inv NOREPET; auto.
Defined.
Theorem fold_ind:
P m_final (
T.fold f m_final init).
Proof.
End TREE_FOLD_IND.
Section TREE_FOLD_REC.
Variables V A:
Type.
Variable f:
A ->
T.elt ->
V ->
A.
Variable P:
T.t V ->
A ->
Prop.
Variable init:
A.
Variable m_final:
T.t V.
Hypothesis P_compat:
forall m m'
a,
(
forall x,
T.get x m =
T.get x m') ->
P m a ->
P m'
a.
Hypothesis H_base:
P (
T.empty _)
init.
Hypothesis H_rec:
forall m a k v,
T.get k m =
None ->
T.get k m_final =
Some v ->
P m a ->
P (
T.set k v m) (
f a k v).
Theorem fold_rec:
P m_final (
T.fold f m_final init).
Proof.
End TREE_FOLD_REC.
A nonnegative measure over trees
Section MEASURE.
Variable V:
Type.
Definition cardinal (
x:
T.t V) :
nat :=
List.length (
T.elements x).
Theorem cardinal_remove:
forall x m y,
T.get x m =
Some y -> (
cardinal (
T.remove x m) <
cardinal m)%
nat.
Proof.
Theorem cardinal_set:
forall x m y,
T.get x m =
None -> (
cardinal m <
cardinal (
T.set x y m))%
nat.
Proof.
End MEASURE.
Forall and exists
Section FORALL_EXISTS.
Variable A:
Type.
Definition for_all (
m:
T.t A) (
f:
T.elt ->
A ->
bool) :
bool :=
T.fold (
fun b x a =>
b &&
f x a)
m true.
Lemma for_all_correct:
forall m f,
for_all m f =
true <-> (
forall x a,
T.get x m =
Some a ->
f x a =
true).
Proof.
intros m0 f.
unfold for_all.
apply fold_rec;
intros.
-
rewrite H0.
split;
intros.
rewrite <-
H in H2;
auto.
rewrite H in H2;
auto.
-
split;
intros.
rewrite T.gempty in H0;
congruence.
auto.
-
split;
intros.
destruct (
andb_prop _ _ H2).
rewrite T.gsspec in H3.
destruct (
T.elt_eq x k).
inv H3.
auto.
apply H1;
auto.
apply andb_true_intro.
split.
rewrite H1.
intros.
apply H2.
rewrite T.gso;
auto.
congruence.
apply H2.
apply T.gss.
Qed.
Definition exists_ (
m:
T.t A) (
f:
T.elt ->
A ->
bool) :
bool :=
T.fold (
fun b x a =>
b ||
f x a)
m false.
Lemma exists_correct:
forall m f,
exists_ m f =
true <-> (
exists x a,
T.get x m =
Some a /\
f x a =
true).
Proof.
intros m0 f.
unfold exists_.
apply fold_rec;
intros.
-
rewrite H0.
split;
intros (
x0 &
a0 &
P &
Q);
exists x0;
exists a0;
split;
auto;
congruence.
-
split;
intros.
congruence.
destruct H as (
x &
a &
P &
Q).
rewrite T.gempty in P;
congruence.
-
split;
intros.
destruct (
orb_true_elim _ _ H2).
rewrite H1 in e.
destruct e as (
x1 &
a1 &
P &
Q).
exists x1;
exists a1;
split;
auto.
rewrite T.gso;
auto.
congruence.
exists k;
exists v;
split;
auto.
apply T.gss.
destruct H2 as (
x1 &
a1 &
P &
Q).
apply orb_true_intro.
rewrite T.gsspec in P.
destruct (
T.elt_eq x1 k).
inv P.
right;
auto.
left.
apply H1.
exists x1;
exists a1;
auto.
Qed.
Remark exists_for_all:
forall m f,
exists_ m f =
negb (
for_all m (
fun x a =>
negb (
f x a))).
Proof.
Remark for_all_exists:
forall m f,
for_all m f =
negb (
exists_ m (
fun x a =>
negb (
f x a))).
Proof.
Lemma for_all_false:
forall m f,
for_all m f =
false <-> (
exists x a,
T.get x m =
Some a /\
f x a =
false).
Proof.
Lemma exists_false:
forall m f,
exists_ m f =
false <-> (
forall x a,
T.get x m =
Some a ->
f x a =
false).
Proof.
End FORALL_EXISTS.
More about beq
Section BOOLEAN_EQUALITY.
Variable A:
Type.
Variable beqA:
A ->
A ->
bool.
Theorem beq_false:
forall m1 m2,
T.beq beqA m1 m2 =
false <->
exists x,
match T.get x m1,
T.get x m2 with
|
None,
None =>
False
|
Some a1,
Some a2 =>
beqA a1 a2 =
false
|
_,
_ =>
True
end.
Proof.
intros;
split;
intros.
-
set (
p1 :=
fun x a1 =>
match T.get x m2 with None =>
false |
Some a2 =>
beqA a1 a2 end).
set (
p2 :=
fun x a2 =>
match T.get x m1 with None =>
false |
Some a1 =>
beqA a1 a2 end).
destruct (
for_all m1 p1)
eqn:
F1; [
destruct (
for_all m2 p2)
eqn:
F2 |
idtac].
+
cut (
T.beq beqA m1 m2 =
true).
congruence.
rewrite for_all_correct in *.
rewrite T.beq_correct;
intros.
destruct (
T.get x m1)
as [
a1|]
eqn:
X1.
generalize (
F1 _ _ X1).
unfold p1.
destruct (
T.get x m2);
congruence.
destruct (
T.get x m2)
as [
a2|]
eqn:
X2;
auto.
generalize (
F2 _ _ X2).
unfold p2.
rewrite X1.
congruence.
+
rewrite for_all_false in F2.
destruct F2 as (
x &
a &
P &
Q).
exists x.
rewrite P.
unfold p2 in Q.
destruct (
T.get x m1);
auto.
+
rewrite for_all_false in F1.
destruct F1 as (
x &
a &
P &
Q).
exists x.
rewrite P.
unfold p1 in Q.
destruct (
T.get x m2);
auto.
-
destruct H as [
x P].
destruct (
T.beq beqA m1 m2)
eqn:
E;
auto.
rewrite T.beq_correct in E.
generalize (
E x).
destruct (
T.get x m1);
destruct (
T.get x m2);
tauto ||
congruence.
Qed.
End BOOLEAN_EQUALITY.
Extensional equality between trees
Section EXTENSIONAL_EQUALITY.
Variable A:
Type.
Variable eqA:
A ->
A ->
Prop.
Hypothesis eqAeq:
Equivalence eqA.
Definition Equal (
m1 m2:
T.t A) :
Prop :=
forall x,
match T.get x m1,
T.get x m2 with
|
None,
None =>
True
|
Some a1,
Some a2 =>
a1 ===
a2
|
_,
_ =>
False
end.
Lemma Equal_refl:
forall m,
Equal m m.
Proof.
intros;
red;
intros.
destruct (
T.get x m);
auto.
reflexivity.
Qed.
Lemma Equal_sym:
forall m1 m2,
Equal m1 m2 ->
Equal m2 m1.
Proof.
intros;
red;
intros.
generalize (
H x).
destruct (
T.get x m1);
destruct (
T.get x m2);
auto.
intros;
symmetry;
auto.
Qed.
Lemma Equal_trans:
forall m1 m2 m3,
Equal m1 m2 ->
Equal m2 m3 ->
Equal m1 m3.
Proof.
intros;
red;
intros.
generalize (
H x) (
H0 x).
destruct (
T.get x m1);
destruct (
T.get x m2);
try tauto;
destruct (
T.get x m3);
try tauto.
intros.
transitivity a0;
auto.
Qed.
Instance Equal_Equivalence :
Equivalence Equal := {
Equivalence_Reflexive :=
Equal_refl;
Equivalence_Symmetric :=
Equal_sym;
Equivalence_Transitive :=
Equal_trans
}.
Hypothesis eqAdec:
EqDec A eqA.
Program Definition Equal_dec (
m1 m2:
T.t A) : {
m1 ===
m2 } + {
m1 =/=
m2 } :=
match T.beq (
fun a1 a2 =>
proj_sumbool (
a1 ==
a2))
m1 m2 with
|
true =>
left _
|
false =>
right _
end.
Next Obligation.
rename Heq_anonymous into B.
symmetry in B.
rewrite T.beq_correct in B.
red;
intros.
generalize (
B x).
destruct (
T.get x m1);
destruct (
T.get x m2);
auto.
intros.
eapply proj_sumbool_true;
eauto.
Qed.
Next Obligation.
Instance Equal_EqDec :
EqDec (
T.t A)
Equal :=
Equal_dec.
End EXTENSIONAL_EQUALITY.
Creating a tree from a list of (key, value) pairs.
Section OF_LIST.
Variable A:
Type.
Let f :=
fun (
m:
T.t A) (
k_v:
T.elt *
A) =>
T.set (
fst k_v) (
snd k_v)
m.
Definition of_list (
l:
list (
T.elt *
A)) :
T.t A :=
List.fold_left f l (
T.empty _).
Lemma in_of_list:
forall l k v,
T.get k (
of_list l) =
Some v ->
In (
k,
v)
l.
Proof.
assert (
REC:
forall k v l m,
T.get k (
fold_left f l m) =
Some v ->
In (
k,
v)
l \/
T.get k m =
Some v).
{
induction l as [ | [
k1 v1]
l];
simpl;
intros.
-
tauto.
-
apply IHl in H.
unfold f in H.
simpl in H.
rewrite T.gsspec in H.
destruct H;
auto.
destruct (
T.elt_eq k k1).
inv H.
auto.
auto.
}
intros.
apply REC in H.
rewrite T.gempty in H.
intuition congruence.
Qed.
Lemma of_list_dom:
forall l k,
In k (
map fst l) ->
exists v,
T.get k (
of_list l) =
Some v.
Proof.
assert (
REC:
forall k l m,
In k (
map fst l) \/ (
exists v,
T.get k m =
Some v) ->
exists v,
T.get k (
fold_left f l m) =
Some v).
{
induction l as [ | [
k1 v1]
l];
simpl;
intros.
-
tauto.
-
apply IHl.
unfold f;
rewrite T.gsspec.
simpl.
destruct (
T.elt_eq k k1).
right;
econstructor;
eauto.
intuition congruence.
}
intros.
apply REC.
auto.
Qed.
Remark of_list_unchanged:
forall k l m, ~
In k (
map fst l) ->
T.get k (
List.fold_left f l m) =
T.get k m.
Proof.
induction l as [ | [
k1 v1]
l];
simpl;
intros.
-
auto.
-
rewrite IHl by tauto.
unfold f;
apply T.gso;
intuition auto.
Qed.
Lemma of_list_unique:
forall k v l1 l2,
~
In k (
map fst l2) ->
T.get k (
of_list (
l1 ++ (
k,
v) ::
l2)) =
Some v.
Proof.
Lemma of_list_norepet:
forall l k v,
list_norepet (
map fst l) ->
In (
k,
v)
l ->
T.get k (
of_list l) =
Some v.
Proof.
Lemma of_list_elements:
forall m k,
T.get k (
of_list (
T.elements m)) =
T.get k m.
Proof.
End OF_LIST.
Lemma of_list_related:
forall (
A B:
Type) (
R:
A ->
B ->
Prop)
k l1 l2,
list_forall2 (
fun ka kb =>
fst ka =
fst kb /\
R (
snd ka) (
snd kb))
l1 l2 ->
option_rel R (
T.get k (
of_list l1)) (
T.get k (
of_list l2)).
Proof.
End Tree_Properties.
Module PTree_Properties :=
Tree_Properties(
PTree).
Useful notations
Notation "
a !
b" := (
PTree.get b a) (
at level 1).
Notation "
a !!
b" := (
PMap.get b a) (
at level 1).