Elimination of unreferenced static definitions
Require Import FSets Coqlib Maps Ordered Iteration Errors.
Require Import AST Linking.
Require Import Integers Values Memory Globalenvs Events Smallstep.
Require Import Op Registers RTL.
Require Import Unusedglob.
Module ISF :=
FSetFacts.Facts(
IS).
Module ISP :=
FSetProperties.Properties(
IS).
Relational specification of the transformation
The transformed program is obtained from the original program
by keeping only the global definitions that belong to a given
set u of names.
Record match_prog_1 (
u:
IS.t) (
p tp:
program) :
Prop := {
match_prog_main:
tp.(
prog_main) =
p.(
prog_main);
match_prog_public:
tp.(
prog_public) =
p.(
prog_public);
match_prog_def:
forall id,
(
prog_defmap tp)!
id =
if IS.mem id u then (
prog_defmap p)!
id else None;
match_prog_unique:
list_norepet (
prog_defs_names tp)
}.
This set u (as "used") must be closed under references, and
contain the entry point and the public identifiers of the program.
Definition ref_function (
f:
function) (
id:
ident) :
Prop :=
exists pc i,
f.(
fn_code)!
pc =
Some i /\
In id (
ref_instruction i).
Definition ref_fundef (
fd:
fundef) (
id:
ident) :
Prop :=
match fd with Internal f =>
ref_function f id |
External ef =>
False end.
Definition ref_init (
il:
list init_data) (
id:
ident) :
Prop :=
exists ofs,
In (
Init_addrof id ofs)
il.
Definition ref_def (
gd:
globdef fundef unit) (
id:
ident) :
Prop :=
match gd with
|
Gfun fd =>
ref_fundef fd id
|
Gvar gv =>
ref_init gv.(
gvar_init)
id
end.
Record valid_used_set (
p:
program) (
u:
IS.t) :
Prop := {
used_closed:
forall id gd id',
IS.In id u -> (
prog_defmap p)!
id =
Some gd ->
ref_def gd id' ->
IS.In id'
u;
used_main:
IS.In p.(
prog_main)
u;
used_public:
forall id,
In id p.(
prog_public) ->
IS.In id u;
used_defined:
forall id,
IS.In id u ->
In id (
prog_defs_names p) \/
id =
p.(
prog_main)
}.
Definition match_prog (
p tp:
program) :
Prop :=
exists u:
IS.t,
valid_used_set p u /\
match_prog_1 u p tp.
Properties of the static analysis
Monotonic evolution of the workset.
Inductive workset_incl (
w1 w2:
workset) :
Prop :=
workset_incl_intro:
forall (
SEEN:
IS.Subset w1.(
w_seen)
w2.(
w_seen))
(
TODO:
List.incl w1.(
w_todo)
w2.(
w_todo))
(
TRACK:
forall id,
IS.In id w2.(
w_seen) ->
IS.In id w1.(
w_seen) \/
List.In id w2.(
w_todo)),
workset_incl w1 w2.
Lemma seen_workset_incl:
forall w1 w2 id,
workset_incl w1 w2 ->
IS.In id w1 ->
IS.In id w2.
Proof.
intros. destruct H. auto.
Qed.
Lemma workset_incl_refl:
forall w,
workset_incl w w.
Proof.
intros; split. red; auto. red; auto. auto.
Qed.
Lemma workset_incl_trans:
forall w1 w2 w3,
workset_incl w1 w2 ->
workset_incl w2 w3 ->
workset_incl w1 w3.
Proof.
intros. destruct H, H0; split.
red; eauto.
red; eauto.
intros. edestruct TRACK0; eauto. edestruct TRACK; eauto.
Qed.
Lemma add_workset_incl:
forall id w,
workset_incl w (
add_workset id w).
Proof.
Lemma addlist_workset_incl:
forall l w,
workset_incl w (
addlist_workset l w).
Proof.
Lemma add_ref_function_incl:
forall f w,
workset_incl w (
add_ref_function f w).
Proof.
Lemma add_ref_globvar_incl:
forall gv w,
workset_incl w (
add_ref_globvar gv w).
Proof.
Lemma add_ref_definition_incl:
forall pm id w,
workset_incl w (
add_ref_definition pm id w).
Proof.
Lemma initial_workset_incl:
forall p,
workset_incl {|
w_seen :=
IS.empty;
w_todo :=
nil |} (
initial_workset p).
Proof.
Soundness properties for functions that add identifiers to the workset
Lemma seen_add_workset:
forall id (
w:
workset),
IS.In id (
add_workset id w).
Proof.
Lemma seen_addlist_workset:
forall id l (
w:
workset),
In id l ->
IS.In id (
addlist_workset l w).
Proof.
Lemma seen_add_ref_function:
forall id f w,
ref_function f id ->
IS.In id (
add_ref_function f w).
Proof.
Lemma seen_add_ref_definition:
forall pm id gd id'
w,
pm!
id =
Some gd ->
ref_def gd id' ->
IS.In id' (
add_ref_definition pm id w).
Proof.
Lemma seen_main_initial_workset:
forall p,
IS.In p.(
prog_main) (
initial_workset p).
Proof.
Lemma seen_public_initial_workset:
forall p id,
In id p.(
prog_public) ->
IS.In id (
initial_workset p).
Proof.
Correctness of the transformation with respect to the relational specification
Correctness of the dependency graph traversal.
Section ANALYSIS.
Variable p:
program.
Let pm :=
prog_defmap p.
Definition workset_invariant (
w:
workset) :
Prop :=
forall id gd id',
IS.In id w -> ~
List.In id (
w_todo w) ->
pm!
id =
Some gd ->
ref_def gd id' ->
IS.In id'
w.
Definition used_set_closed (
u:
IS.t) :
Prop :=
forall id gd id',
IS.In id u ->
pm!
id =
Some gd ->
ref_def gd id' ->
IS.In id'
u.
Lemma iter_step_invariant:
forall w,
workset_invariant w ->
match iter_step pm w with
|
inl u =>
used_set_closed u
|
inr w' =>
workset_invariant w'
end.
Proof.
Theorem used_globals_sound:
forall u,
used_globals p pm =
Some u ->
used_set_closed u.
Proof.
Theorem used_globals_incl:
forall u,
used_globals p pm =
Some u ->
IS.Subset (
initial_workset p)
u.
Proof.
Corollary used_globals_valid:
forall u,
used_globals p pm =
Some u ->
IS.for_all (
global_defined p pm)
u =
true ->
valid_used_set p u.
Proof.
End ANALYSIS.
Properties of the elimination of unused global definitions.
Section TRANSFORMATION.
Variable p:
program.
Variable used:
IS.t.
Let add_def (
m:
prog_map)
idg :=
PTree.set (
fst idg) (
snd idg)
m.
Remark filter_globdefs_accu:
forall defs accu1 accu2 u,
filter_globdefs u (
accu1 ++
accu2)
defs =
filter_globdefs u accu1 defs ++
accu2.
Proof.
induction defs;
simpl;
intros.
auto.
destruct a as [
id gd].
destruct (
IS.mem id u);
auto.
rewrite <-
IHdefs.
auto.
Qed.
Remark filter_globdefs_nil:
forall u accu defs,
filter_globdefs u accu defs =
filter_globdefs u nil defs ++
accu.
Proof.
Lemma filter_globdefs_map_1:
forall id l u m1,
IS.mem id u =
false ->
m1!
id =
None ->
(
fold_left add_def (
filter_globdefs u nil l)
m1)!
id =
None.
Proof.
Lemma filter_globdefs_map_2:
forall id l u m1 m2,
IS.mem id u =
true ->
m1!
id =
m2!
id ->
(
fold_left add_def (
filter_globdefs u nil l)
m1)!
id = (
fold_left add_def (
List.rev l)
m2)!
id.
Proof.
Lemma filter_globdefs_map:
forall id u defs,
(
PTree_Properties.of_list (
filter_globdefs u nil (
List.rev defs)))!
id =
if IS.mem id u then (
PTree_Properties.of_list defs)!
id else None.
Proof.
Lemma filter_globdefs_domain:
forall id l u,
In id (
map fst (
filter_globdefs u nil l)) ->
IS.In id u /\
In id (
map fst l).
Proof.
induction l as [ | [
id1 gd1]
l];
simpl;
intros.
-
tauto.
-
destruct (
IS.mem id1 u)
eqn:
MEM.
+
rewrite filter_globdefs_nil,
map_app,
in_app_iff in H.
destruct H.
apply IHl in H.
rewrite ISF.remove_iff in H.
tauto.
simpl in H.
destruct H;
try tauto.
subst id1.
split;
auto.
apply IS.mem_2;
auto.
+
apply IHl in H.
tauto.
Qed.
Lemma filter_globdefs_unique_names:
forall l u,
list_norepet (
map fst (
filter_globdefs u nil l)).
Proof.
End TRANSFORMATION.
Theorem transf_program_match:
forall p tp,
transform_program p =
OK tp ->
match_prog p tp.
Proof.
Semantic preservation
Section SOUNDNESS.
Variable p:
program.
Variable tp:
program.
Variable used:
IS.t.
Hypothesis USED_VALID:
valid_used_set p used.
Hypothesis TRANSF:
match_prog_1 used p tp.
Let ge :=
Genv.globalenv p.
Let tge :=
Genv.globalenv tp.
Let pm :=
prog_defmap p.
Definition kept (
id:
ident) :
Prop :=
IS.In id used.
Lemma kept_closed:
forall id gd id',
kept id ->
pm!
id =
Some gd ->
ref_def gd id' ->
kept id'.
Proof.
Lemma kept_main:
kept p.(
prog_main).
Proof.
Lemma kept_public:
forall id,
In id p.(
prog_public) ->
kept id.
Proof.
Relating Genv.find_symbol operations in the original and transformed program
Lemma transform_find_symbol_1:
forall id b,
Genv.find_symbol ge id =
Some b ->
kept id ->
exists b',
Genv.find_symbol tge id =
Some b'.
Proof.
Lemma transform_find_symbol_2:
forall id b,
Genv.find_symbol tge id =
Some b ->
kept id /\
exists b',
Genv.find_symbol ge id =
Some b'.
Proof.
Injections that preserve used globals.
Record meminj_preserves_globals (
f:
meminj) :
Prop := {
symbols_inject_1:
forall id b b'
delta,
f b =
Some(
b',
delta) ->
Genv.find_symbol ge id =
Some b ->
delta = 0 /\
Genv.find_symbol tge id =
Some b';
symbols_inject_2:
forall id b,
kept id ->
Genv.find_symbol ge id =
Some b ->
exists b',
Genv.find_symbol tge id =
Some b' /\
f b =
Some(
b', 0);
symbols_inject_3:
forall id b',
Genv.find_symbol tge id =
Some b' ->
exists b,
Genv.find_symbol ge id =
Some b /\
f b =
Some(
b', 0);
defs_inject:
forall b b'
delta gd,
f b =
Some(
b',
delta) ->
Genv.find_def ge b =
Some gd ->
Genv.find_def tge b' =
Some gd /\
delta = 0 /\
(
forall id,
ref_def gd id ->
kept id);
defs_rev_inject:
forall b b'
delta gd,
f b =
Some(
b',
delta) ->
Genv.find_def tge b' =
Some gd ->
Genv.find_def ge b =
Some gd /\
delta = 0
}.
Definition init_meminj :
meminj :=
fun b =>
match Genv.invert_symbol ge b with
|
Some id =>
match Genv.find_symbol tge id with
|
Some b' =>
Some (
b', 0)
|
None =>
None
end
|
None =>
None
end.
Remark init_meminj_eq:
forall id b b',
Genv.find_symbol ge id =
Some b ->
Genv.find_symbol tge id =
Some b' ->
init_meminj b =
Some(
b', 0).
Proof.
Remark init_meminj_invert:
forall b b'
delta,
init_meminj b =
Some(
b',
delta) ->
delta = 0 /\
exists id,
Genv.find_symbol ge id =
Some b /\
Genv.find_symbol tge id =
Some b'.
Proof.
Lemma init_meminj_preserves_globals:
meminj_preserves_globals init_meminj.
Proof.
Lemma globals_symbols_inject:
forall j,
meminj_preserves_globals j ->
symbols_inject j ge tge.
Proof.
Lemma symbol_address_inject:
forall j id ofs,
meminj_preserves_globals j ->
kept id ->
Val.inject j (
Genv.symbol_address ge id ofs) (
Genv.symbol_address tge id ofs).
Proof.
Semantic preservation
Definition regset_inject (
f:
meminj) (
rs rs':
regset):
Prop :=
forall r,
Val.inject f rs#
r rs'#
r.
Lemma regs_inject:
forall f rs rs',
regset_inject f rs rs' ->
forall l,
Val.inject_list f rs##
l rs'##
l.
Proof.
induction l; simpl. constructor. constructor; auto.
Qed.
Lemma set_reg_inject:
forall f rs rs'
r v v',
regset_inject f rs rs' ->
Val.inject f v v' ->
regset_inject f (
rs#
r <-
v) (
rs'#
r <-
v').
Proof.
Lemma set_res_inject:
forall f rs rs'
res v v',
regset_inject f rs rs' ->
Val.inject f v v' ->
regset_inject f (
regmap_setres res v rs) (
regmap_setres res v'
rs').
Proof.
Lemma regset_inject_incr:
forall f f'
rs rs',
regset_inject f rs rs' ->
inject_incr f f' ->
regset_inject f'
rs rs'.
Proof.
Lemma regset_undef_inject:
forall f,
regset_inject f (
Regmap.init Vundef) (
Regmap.init Vundef).
Proof.
intros;
red;
intros.
rewrite Regmap.gi.
auto.
Qed.
Lemma init_regs_inject:
forall f args args',
Val.inject_list f args args' ->
forall params,
regset_inject f (
init_regs args params) (
init_regs args'
params).
Proof.
Inductive match_stacks (
j:
meminj):
list stackframe ->
list stackframe ->
block ->
block ->
Prop :=
|
match_stacks_nil:
forall bound tbound,
meminj_preserves_globals j ->
Ple (
Genv.genv_next ge)
bound ->
Ple (
Genv.genv_next tge)
tbound ->
match_stacks j nil nil bound tbound
|
match_stacks_cons:
forall res f sp pc rs s tsp trs ts bound tbound
(
STACKS:
match_stacks j s ts sp tsp)
(
KEPT:
forall id,
ref_function f id ->
kept id)
(
SPINJ:
j sp =
Some(
tsp, 0))
(
REGINJ:
regset_inject j rs trs)
(
BELOW:
Plt sp bound)
(
TBELOW:
Plt tsp tbound),
match_stacks j (
Stackframe res f (
Vptr sp Ptrofs.zero)
pc rs ::
s)
(
Stackframe res f (
Vptr tsp Ptrofs.zero)
pc trs ::
ts)
bound tbound.
Lemma match_stacks_preserves_globals:
forall j s ts bound tbound,
match_stacks j s ts bound tbound ->
meminj_preserves_globals j.
Proof.
induction 1; auto.
Qed.
Lemma match_stacks_incr:
forall j j',
inject_incr j j' ->
forall s ts bound tbound,
match_stacks j s ts bound tbound ->
(
forall b1 b2 delta,
j b1 =
None ->
j'
b1 =
Some(
b2,
delta) ->
Ple bound b1 /\
Ple tbound b2) ->
match_stacks j'
s ts bound tbound.
Proof.
Lemma match_stacks_bound:
forall j s ts bound tbound bound'
tbound',
match_stacks j s ts bound tbound ->
Ple bound bound' ->
Ple tbound tbound' ->
match_stacks j s ts bound'
tbound'.
Proof.
Inductive match_states:
state ->
state ->
Prop :=
|
match_states_regular:
forall s f sp pc rs m ts tsp trs tm j
(
STACKS:
match_stacks j s ts sp tsp)
(
KEPT:
forall id,
ref_function f id ->
kept id)
(
SPINJ:
j sp =
Some(
tsp, 0))
(
REGINJ:
regset_inject j rs trs)
(
MEMINJ:
Mem.inject j m tm),
match_states (
State s f (
Vptr sp Ptrofs.zero)
pc rs m)
(
State ts f (
Vptr tsp Ptrofs.zero)
pc trs tm)
|
match_states_call:
forall s fd args m ts targs tm j
(
STACKS:
match_stacks j s ts (
Mem.nextblock m) (
Mem.nextblock tm))
(
KEPT:
forall id,
ref_fundef fd id ->
kept id)
(
ARGINJ:
Val.inject_list j args targs)
(
MEMINJ:
Mem.inject j m tm),
match_states (
Callstate s fd args m)
(
Callstate ts fd targs tm)
|
match_states_return:
forall s res m ts tres tm j
(
STACKS:
match_stacks j s ts (
Mem.nextblock m) (
Mem.nextblock tm))
(
RESINJ:
Val.inject j res tres)
(
MEMINJ:
Mem.inject j m tm),
match_states (
Returnstate s res m)
(
Returnstate ts tres tm).
Lemma external_call_inject:
forall ef vargs m1 t vres m2 f m1'
vargs',
meminj_preserves_globals f ->
external_call ef ge vargs m1 t vres m2 ->
Mem.inject f m1 m1' ->
Val.inject_list f vargs vargs' ->
exists f',
exists vres',
exists m2',
external_call ef tge vargs'
m1'
t vres'
m2'
/\
Val.inject f'
vres vres'
/\
Mem.inject f'
m2 m2'
/\
Mem.unchanged_on (
loc_unmapped f)
m1 m2
/\
Mem.unchanged_on (
loc_out_of_reach f m1)
m1'
m2'
/\
inject_incr f f'
/\
inject_separated f f'
m1 m1'.
Proof.
Lemma find_function_inject:
forall j ros rs fd trs,
meminj_preserves_globals j ->
find_function ge ros rs =
Some fd ->
match ros with inl r =>
regset_inject j rs trs |
inr id =>
kept id end ->
find_function tge ros trs =
Some fd /\ (
forall id,
ref_fundef fd id ->
kept id).
Proof.
Lemma eval_builtin_arg_inject:
forall rs sp m j rs'
sp'
m'
a v,
eval_builtin_arg ge (
fun r =>
rs#
r) (
Vptr sp Ptrofs.zero)
m a v ->
j sp =
Some(
sp', 0) ->
meminj_preserves_globals j ->
regset_inject j rs rs' ->
Mem.inject j m m' ->
(
forall id,
In id (
globals_of_builtin_arg a) ->
kept id) ->
exists v',
eval_builtin_arg tge (
fun r =>
rs'#
r) (
Vptr sp'
Ptrofs.zero)
m'
a v'
/\
Val.inject j v v'.
Proof.
Lemma eval_builtin_args_inject:
forall rs sp m j rs'
sp'
m'
al vl,
eval_builtin_args ge (
fun r =>
rs#
r) (
Vptr sp Ptrofs.zero)
m al vl ->
j sp =
Some(
sp', 0) ->
meminj_preserves_globals j ->
regset_inject j rs rs' ->
Mem.inject j m m' ->
(
forall id,
In id (
globals_of_builtin_args al) ->
kept id) ->
exists vl',
eval_builtin_args tge (
fun r =>
rs'#
r) (
Vptr sp'
Ptrofs.zero)
m'
al vl'
/\
Val.inject_list j vl vl'.
Proof.
induction 1;
intros.
-
exists (@
nil val);
split;
constructor.
-
simpl in H5.
exploit eval_builtin_arg_inject;
eauto using in_or_app.
intros (
v1' &
A &
B).
destruct IHlist_forall2 as (
vl' &
C &
D);
eauto using in_or_app.
exists (
v1' ::
vl');
split;
constructor;
auto.
Qed.
Theorem step_simulation:
forall S1 t S2,
step ge S1 t S2 ->
forall S1' (
MS:
match_states S1 S1'),
exists S2',
step tge S1'
t S2' /\
match_states S2 S2'.
Proof.
Relating initial memory states
Lemma init_meminj_invert_strong:
forall b b'
delta,
init_meminj b =
Some(
b',
delta) ->
delta = 0 /\
exists id gd,
Genv.find_symbol ge id =
Some b
/\
Genv.find_symbol tge id =
Some b'
/\
Genv.find_def ge b =
Some gd
/\
Genv.find_def tge b' =
Some gd
/\ (
forall i,
ref_def gd i ->
kept i).
Proof.
Section INIT_MEM.
Variables m tm:
mem.
Hypothesis IM:
Genv.init_mem p =
Some m.
Hypothesis TIM:
Genv.init_mem tp =
Some tm.
Lemma bytes_of_init_inject:
forall il,
(
forall id,
ref_init il id ->
kept id) ->
list_forall2 (
memval_inject init_meminj) (
Genv.bytes_of_init_data_list ge il) (
Genv.bytes_of_init_data_list tge il).
Proof.
Lemma Mem_getN_forall2:
forall (
P:
memval ->
memval ->
Prop)
c1 c2 i n p,
list_forall2 P (
Mem.getN n p c1) (
Mem.getN n p c2) ->
p <=
i ->
i <
p +
Z.of_nat n ->
P (
ZMap.get i c1) (
ZMap.get i c2).
Proof.
induction n;
simpl Mem.getN;
intros.
-
simpl in H1.
extlia.
-
inv H.
rewrite Nat2Z.inj_succ in H1.
destruct (
zeq i p0).
+
congruence.
+
apply IHn with (
p0 + 1);
auto.
lia.
lia.
Qed.
Lemma init_mem_inj_1:
Mem.mem_inj init_meminj m tm.
Proof.
Lemma init_mem_inj_2:
Mem.inject init_meminj m tm.
Proof.
End INIT_MEM.
Lemma init_mem_exists:
forall m,
Genv.init_mem p =
Some m ->
exists tm,
Genv.init_mem tp =
Some tm.
Proof.
Theorem init_mem_inject:
forall m,
Genv.init_mem p =
Some m ->
exists f tm,
Genv.init_mem tp =
Some tm /\
Mem.inject f m tm /\
meminj_preserves_globals f.
Proof.
Lemma transf_initial_states:
forall S1,
initial_state p S1 ->
exists S2,
initial_state tp S2 /\
match_states S1 S2.
Proof.
Lemma transf_final_states:
forall S1 S2 r,
match_states S1 S2 ->
final_state S1 r ->
final_state S2 r.
Proof.
intros. inv H0. inv H. inv STACKS. inv RESINJ. constructor.
Qed.
Lemma transf_program_correct_1:
forward_simulation (
semantics p) (
semantics tp).
Proof.
End SOUNDNESS.
Theorem transf_program_correct:
forall p tp,
match_prog p tp ->
forward_simulation (
semantics p) (
semantics tp).
Proof.
Commutation with linking
Remark link_def_either:
forall (
gd1 gd2 gd:
globdef fundef unit),
link_def gd1 gd2 =
Some gd ->
gd =
gd1 \/
gd =
gd2.
Proof with
Remark used_not_defined:
forall p used id,
valid_used_set p used ->
(
prog_defmap p)!
id =
None ->
IS.mem id used =
false \/
id =
prog_main p.
Proof.
Remark used_not_defined_2:
forall p used id,
valid_used_set p used ->
id <>
prog_main p ->
(
prog_defmap p)!
id =
None ->
~
IS.In id used.
Proof.
Lemma link_valid_used_set:
forall p1 p2 p used1 used2,
link p1 p2 =
Some p ->
valid_used_set p1 used1 ->
valid_used_set p2 used2 ->
valid_used_set p (
IS.union used1 used2).
Proof.
Theorem link_match_program:
forall p1 p2 tp1 tp2 p,
link p1 p2 =
Some p ->
match_prog p1 tp1 ->
match_prog p2 tp2 ->
exists tp,
link tp1 tp2 =
Some tp /\
match_prog p tp.
Proof.
intros.
destruct H0 as (
used1 &
A1 &
B1).
destruct H1 as (
used2 &
A2 &
B2).
destruct (
link_prog_inv _ _ _ H)
as (
U &
V &
W).
econstructor;
split.
-
apply link_prog_succeeds.
+
rewrite (
match_prog_main _ _ _ B1), (
match_prog_main _ _ _ B2).
auto.
+
intros.
rewrite (
match_prog_def _ _ _ B1)
in H0.
rewrite (
match_prog_def _ _ _ B2)
in H1.
destruct (
IS.mem id used1)
eqn:
U1;
try discriminate.
destruct (
IS.mem id used2)
eqn:
U2;
try discriminate.
edestruct V as (
X &
Y &
gd &
Z);
eauto.
split.
rewrite (
match_prog_public _ _ _ B1);
auto.
split.
rewrite (
match_prog_public _ _ _ B2);
auto.
congruence.
-
exists (
IS.union used1 used2);
split.
+
eapply link_valid_used_set;
eauto.
+
rewrite W.
constructor;
simpl;
intros.
*
eapply match_prog_main;
eauto.
*
rewrite (
match_prog_public _ _ _ B1), (
match_prog_public _ _ _ B2).
auto.
*
rewrite !
prog_defmap_elements, !
PTree.gcombine by auto.
rewrite (
match_prog_def _ _ _ B1 id), (
match_prog_def _ _ _ B2 id).
rewrite ISF.union_b.
{
destruct (
prog_defmap p1)!
id as [
gd1|]
eqn:
GD1;
destruct (
prog_defmap p2)!
id as [
gd2|]
eqn:
GD2.
-
exploit V;
eauto.
intros (
PUB1 &
PUB2 &
_).
assert (
EQ1:
IS.mem id used1 =
true)
by (
apply IS.mem_1;
eapply used_public;
eauto).
assert (
EQ2:
IS.mem id used2 =
true)
by (
apply IS.mem_1;
eapply used_public;
eauto).
rewrite EQ1,
EQ2;
auto.
-
exploit used_not_defined;
eauto.
intros [
A|
A].
rewrite A,
orb_false_r.
destruct (
IS.mem id used1);
auto.
replace (
IS.mem id used1)
with true.
destruct (
IS.mem id used2);
auto.
symmetry.
apply IS.mem_1.
rewrite A, <-
U.
eapply used_main;
eauto.
-
exploit used_not_defined.
eexact A1.
eauto.
intros [
A|
A].
rewrite A,
orb_false_l.
destruct (
IS.mem id used2);
auto.
replace (
IS.mem id used2)
with true.
destruct (
IS.mem id used1);
auto.
symmetry.
apply IS.mem_1.
rewrite A,
U.
eapply used_main;
eauto.
-
destruct (
IS.mem id used1), (
IS.mem id used2);
auto.
}
*
intros.
apply PTree.elements_keys_norepet.
Qed.
Instance TransfSelectionLink :
TransfLink match_prog :=
link_match_program.