This library provides type classes and tactics to decide logical
propositions by reflection into computable Boolean equalities.
It extends the DecidableClass module from the standard library
of Coq 8.5 with more instances of decidable properties, including
universal and existential quantification over finite types.
Require Export DecidableClass.
Require Import Coqlib.
Ltac decide_goal :=
eapply Decidable_sound;
reflexivity.
Deciding logical connectives
Program Instance Decidable_not (
P:
Prop) (
dP:
Decidable P) :
Decidable (~
P) := {
Decidable_witness :=
negb (@
Decidable_witness P dP)
}.
Next Obligation.
Program Instance Decidable_equiv (
P Q:
Prop) (
dP:
Decidable P) (
dQ:
Decidable Q) :
Decidable (
P <->
Q) := {
Decidable_witness :=
Bool.eqb (@
Decidable_witness P dP) (@
Decidable_witness Q dQ)
}.
Next Obligation.
Program Instance Decidable_and (
P Q:
Prop) (
dP:
Decidable P) (
dQ:
Decidable Q) :
Decidable (
P /\
Q) := {
Decidable_witness := @
Decidable_witness P dP && @
Decidable_witness Q dQ
}.
Next Obligation.
Program Instance Decidable_or (
P Q:
Prop) (
dP:
Decidable P) (
dQ:
Decidable Q) :
Decidable (
P \/
Q) := {
Decidable_witness := @
Decidable_witness P dP || @
Decidable_witness Q dQ
}.
Next Obligation.
Program Instance Decidable_implies (
P Q:
Prop) (
dP:
Decidable P) (
dQ:
Decidable Q) :
Decidable (
P ->
Q) := {
Decidable_witness :=
if @
Decidable_witness P dP then @
Decidable_witness Q dQ else true
}.
Next Obligation.
Deciding equalities.
Program Definition Decidable_eq {
A:
Type} (
eqdec:
forall (
x y:
A), {
x=
y} + {
x<>
y}) (
x y:
A) :
Decidable (
eq x y) := {|
Decidable_witness :=
proj_sumbool (
eqdec x y)
|}.
Next Obligation.
split;
intros.
InvBooleans.
auto.
subst y.
apply dec_eq_true.
Qed.
Program Instance Decidable_eq_bool :
forall (
x y :
bool),
Decidable (
eq x y) := {
Decidable_witness :=
Bool.eqb x y
}.
Next Obligation.
Program Instance Decidable_eq_nat :
forall (
x y :
nat),
Decidable (
eq x y) := {
Decidable_witness :=
Nat.eqb x y
}.
Next Obligation.
Program Instance Decidable_eq_positive :
forall (
x y :
positive),
Decidable (
eq x y) := {
Decidable_witness :=
Pos.eqb x y
}.
Next Obligation.
Program Instance Decidable_eq_Z :
forall (
x y :
Z),
Decidable (
eq x y) := {
Decidable_witness :=
Z.eqb x y
}.
Next Obligation.
Deciding order on Z
Program Instance Decidable_le_Z :
forall (
x y:
Z),
Decidable (
x <=
y) := {
Decidable_witness :=
Z.leb x y
}.
Next Obligation.
Program Instance Decidable_lt_Z :
forall (
x y:
Z),
Decidable (
x <
y) := {
Decidable_witness :=
Z.ltb x y
}.
Next Obligation.
Program Instance Decidable_ge_Z :
forall (
x y:
Z),
Decidable (
x >=
y) := {
Decidable_witness :=
Z.geb x y
}.
Next Obligation.
Program Instance Decidable_gt_Z :
forall (
x y:
Z),
Decidable (
x >
y) := {
Decidable_witness :=
Z.gtb x y
}.
Next Obligation.
Program Instance Decidable_divides :
forall (
x y:
Z),
Decidable (
x |
y) := {
Decidable_witness :=
Z.eqb y ((
y /
x) *
x)%
Z
}.
Next Obligation.
split.
intros.
apply Z.eqb_eq in H.
exists (
y /
x).
auto.
intros [
k EQ].
apply Z.eqb_eq.
destruct (
Z.eq_dec x 0).
subst x.
rewrite Z.mul_0_r in EQ.
subst y.
reflexivity.
assert (
k =
y /
x).
{
apply Zdiv_unique_full with 0.
red;
lia.
rewrite EQ;
ring. }
congruence.
Qed.
Deciding properties over lists
Program Instance Decidable_forall_in_list :
forall (
A:
Type) (
l:
list A) (
P:
A ->
Prop) (
dP:
forall x:
A,
Decidable (
P x)),
Decidable (
forall x:
A,
In x l ->
P x) := {
Decidable_witness :=
List.forallb (
fun x => @
Decidable_witness (
P x) (
dP x))
l
}.
Next Obligation.
Program Instance Decidable_exists_in_list :
forall (
A:
Type) (
l:
list A) (
P:
A ->
Prop) (
dP:
forall x:
A,
Decidable (
P x)),
Decidable (
exists x:
A,
In x l /\
P x) := {
Decidable_witness :=
List.existsb (
fun x => @
Decidable_witness (
P x) (
dP x))
l
}.
Next Obligation.
Types with finitely many elements.
Class Finite (
T:
Type) := {
Finite_elements:
list T;
Finite_elements_spec:
forall x:
T,
In x Finite_elements
}.
Deciding forall and exists quantification over finite types.
Program Instance Decidable_forall :
forall (
T:
Type) (
fT:
Finite T) (
P:
T ->
Prop) (
dP:
forall x:
T,
Decidable (
P x)),
Decidable (
forall x,
P x) := {
Decidable_witness :=
List.forallb (
fun x => @
Decidable_witness (
P x) (
dP x)) (@
Finite_elements T fT)
}.
Next Obligation.
Program Instance Decidable_exists :
forall (
T:
Type) (
fT:
Finite T) (
P:
T ->
Prop) (
dP:
forall x:
T,
Decidable (
P x)),
Decidable (
exists x,
P x) := {
Decidable_witness :=
List.existsb (
fun x => @
Decidable_witness (
P x) (
dP x)) (@
Finite_elements T fT)
}.
Next Obligation.
Some examples of finite types.
Program Instance Finite_bool :
Finite bool := {
Finite_elements :=
false ::
true ::
nil
}.
Next Obligation.
destruct x; auto.
Qed.
Program Instance Finite_pair :
forall (
A B:
Type) (
fA:
Finite A) (
fB:
Finite B),
Finite (
A *
B) := {
Finite_elements :=
list_prod (@
Finite_elements A fA) (@
Finite_elements B fB)
}.
Next Obligation.
Program Instance Finite_option :
forall (
A:
Type) (
fA:
Finite A),
Finite (
option A) := {
Finite_elements :=
None ::
List.map (@
Some A) (@
Finite_elements A fA)
}.
Next Obligation.